Eisenstein’s criterion, Fermat’s last theorem, and a conjecture on powerful numbers

Pietro Paparella
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 2, Pages 22–29
DOI: 10.7546/nntdm.2019.25.2.22-29
Full paper (PDF, 4121 Kb)

Details

Authors and affiliations

Pietro Paparella 
Division of Engineering and Mathematics, University of Washington Bothell
18115 Campus Way NE, Bothell, WA 98011-8246, United States

Abstract

Given integers  > > 0, monic polynomials XnYn, and Zn are given with the property that the complex number ρ is a zero of Xn if and only if the triple (ρρ + mρ + ) satisfies xn + yn = zn. It is shown that the irreducibility of these polynomials implies Fermat’s last theorem. It is also demonstrated, in a precise asymptotic sense, that for a majority of cases, these polynomials are irreducible via application of Eisenstein’s criterion. We conclude by offering a conjecture on powerful numbers.

Keywords

  • Eisenstein’s criterion
  • Fermat’s last theorem
  • Fermat equation
  • Irreducible polynomial
  • Powerful numbers

2010 Mathematics Subject Classification

  • 11A99
  • 11C08
  • 11D41

References

  1. Cox, D. A. (2011). Why Eisenstein proved the Eisenstein criterion and why Schonemann discovered it first [reprint of mr2572615]. Amer. Math. Monthly, 118(1), 3–21.
  2. Golomb, S. W. (1970). Powerful numbers. Amer. Math. Monthly, 77, 848–855.
  3. Paparella, P. Is every powerful number the sum of a powerful number and a prime? MathOverflow. Available online: https://mathoverflow.net/q/269080 (version: 2017-05-07).
  4. Prasolov, V. V. (2010). Polynomials Algorithms and Computation in Mathematics, 11, Springer-Verlag, Berlin. Translated from the 2001 Russian second edition by Dimitry Leites, Paperback edition [of MR2082772].
  5. Ribenboim, P. (1999). Fermat’s last theorem for amateurs. Springer-Verlag, New York.
  6. Taylor, R. & Wiles, A. (1995). Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2), 141(3), 553–572.
  7. Wiles, A. (1995). Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2), 141(3), 443–551.

Related papers

Cite this paper

Paparella, P. (2019). Eisenstein’s criterion, Fermat’s last theorem, and a conjecture on powerful numbers. Notes on Number Theory and Discrete Mathematics, 25(2), 22-29, DOI: 10.7546/nntdm.2019.25.2.22-29.

Comments are closed.