A. G. Shannon and J. V. Leyendekkers

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 23, 2017, Number 2, Pages 117—125

**Download full paper: PDF, 197 Kb**

## Details

### Authors and affiliations

A. G. Shannon

*Emeritus Professor, University of Technology Sydney, NSW 2007
Campion College, PO Box 3052, Toongabbie East, NSW 2146, Australia
*

J. V. Leyendekkers

*Faculty of Science, The University of Sydney
NSW 2006, Australia
*

### Abstract

This paper considers some aspects of Legendre’s conjecture as a conjecture and estimates the number of primes in some intervals in order to portray a compelling picture of some of the computational issues generated by the conjecture.

### Keywords

- Conjectures
- Twin primes
- Sieves
- Almost-primes
- Chen primes
- Arithmetic functions
- Characteristic functions

### AMS Classification

- 11A41
- 11-01

### References

- Sprows, D. (2014) Finding Prime Divisors of a Number without Dividing. Int J Math Ed Sci Tech., 15, 291–293.
- Echeverria, J. (1996) Empirical Methods in Mathematics. A Case Study: Goldbach’s Conjecture. In Munévar G. (ed.). Spanish Studies in the Philosophy of Science. Dordrecht: Kluwer, 19–56.
- Friedlander, J., & Iwaniec, H. (1997) Using a parity-sensitive sieve to count prime values of a polynomial. Proc Nat Acad Sci., 94 (4), 1054–1058.
- Desboves, A. (1855) Sur un théorème de Legendre et son application à la recherché de limites qui comprennent entre elles des nombres premiers. Nouvelles Annales de Mathématiques – 1re série.; Tome 14: 281–295.
- Legendre, A.-M. (1801) Essai sur le Théorie des Nombres: Cambridge: Cambridge University Press, première partie 1801 – digitally printed 2009.
- Hardy, G. H., & Heilbronn, H. (1938) Edmund Landau. J Lond Math Soc., 13, 302–310.
- Cioabǎ, S. M., & Ram Murty, M. (2008) Expander graphs and gaps between primes. Forum Mathematicum, 20, 745–756.
- Oliveira e Silva, T., Herzog, S., & Pardi, S. (2014) Empirical verification of the even Goldbach Conjecture and computation of prime gaps up to 4.1018. Math Comp., 83, 2033–2060.
- Chen, J. (1975) On the Distribution of Almost Primes in an Interval. Scientia Sinica, 18, 611–627.

Hardy, G. E., & Wright, E. M. (1979) An Introduction to the Theory of Numbers – 5th Edition. Oxford: Oxford University Press, p. 415. - Ingham, A. E. (1937) On the difference between consecutive primes. Quarterly Journal of Mathematics Oxford, 8 (1), 255–266.
- Iwaniec, H. (1978) Almost-primes represented by quadratic polynomials. Inventiones Mathematicae, 178–188.
- Lemke Oliver, R. J. (2012) Almost-primes represented by quadratic polynomials. Acta Arith., 151, 241–261.
- Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences. 1973+. Sequence A050216.
- Jradi, W. (1988) Some Problems on Euler’s Phi-Function, PhD Thesis. Sydney: University of Technology Sydney.
- Matomäki, K. (2013) Carmichael numbers in arithmetic progressions. J Austral Math Soc., 94, 268–275.
- Conway, J. H., Dietrich, H., & O’Brien, E. A. (2008) Counting Groups: Gnus, Moas, and Other Exotica. Math Intell., 30, 6–18.
- Yates, S. (1982) Repunits and Repetends. Boynton Beach, FL: Star Publishing.
- Cramér, H. (1936) On the order of magnitude of the difference between consecutive prime numbers. Acta Arithmetica, 2, 23–46.
- Gardner, M. (1964) Mathematical Games: The Remarkable Lore of the Prime Number. Sci Amer., 210, 120–128.
- Snyder, V. (1912) The Fifth International Congress of Mathematicians, Cambridge, 1912. Bull Amer Math Soc., 19, 107–130.
- Hardy, G. H., & Littlewood, J. E. (1923) Some Problems of ‘Partitio Numerorum’; III: On the Expression of a Number as a Sum of Primes. Acta Math; 44, 1–70.
- Bateman, P. T., & Horn, R. A. (1962) A heuristic asymptotic formula concerning the distribution of prime numbers. Math Comp., 16, 363–367.
- Stein, M. L., Ulam, S. M., & Wells, M. B. (1964) A Visual Display of Some Properties of the Distribution of Primes. Amer Math Monthly., 71, 516–520.
- Atanassov, K. (2013). A formula for the n-th prime number. Comptes rendus de l’Academie Bulgare des Sciences, 66, 503–506.
- Ribenboim, P. (1997) Are there functions that generate prime numbers? College Math J., 28, 352–359.
- Vassilev-Missana, M. (2013) New Explicit Representations for the Prime Counting Function. Notes Number Th Discr Math., 19(3), 24–27.
- Sita Rama Chandra Rao, R., & Sita Ramaiah, V. (1979) Ramanujan Sums in Regular Arithmetical Convolutions. Math Stud., 45, 10–11.
- Maynard, J. (2015) Small gaps between primes. Ann Math., 181(1), 383–413.
- Leyendekkers, J. V., & Shannon, A. G. (2004) An extension of Euler’s prime generating function. Notes Number Th Discr Math., 10(4), 100–105.
- Zhang, Y. (2014) Bounded gaps between primes. Ann Math., 179, 1121–1174.
- Friedlander, J., & Iwaniec, J. (1997) Using a parity-sensitive sieve to count prime values of a polynomial. Proc Nat Acad Sci., 94, 1054–1058.

## Related papers

## Cite this paper

Shannon, A. G. & Leyendekkers, J. V. (2017). On Legendre’s Conjecture. Notes on Number Theory and Discrete Mathematics, 23(2), 117-125.