On Legendre’s Conjecture

A. G. Shannon and J. V. Leyendekkers
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 23, 2017, Number 2, Pages 117—125
Download full paper: PDF, 197 Kb

Details

Authors and affiliations

A. G. Shannon
Emeritus Professor, University of Technology Sydney, NSW 2007
Campion College, PO Box 3052, Toongabbie East, NSW 2146, Australia

J. V. Leyendekkers
Faculty of Science, The University of Sydney
NSW 2006, Australia

Abstract

This paper considers some aspects of Legendre’s conjecture as a conjecture and estimates the number of primes in some intervals in order to portray a compelling picture of some of the computational issues generated by the conjecture.

Keywords

  • Conjectures
  • Twin primes
  • Sieves
  • Almost-primes
  • Chen primes
  • Arithmetic functions
  • Characteristic functions

AMS Classification

  • 11A41
  • 11-01

References

  1. Sprows, D. (2014) Finding Prime Divisors of a Number without Dividing. Int J Math Ed Sci Tech., 15, 291–293.
  2. Echeverria, J. (1996) Empirical Methods in Mathematics. A Case Study: Goldbach’s Conjecture. In Munévar G. (ed.). Spanish Studies in the Philosophy of Science. Dordrecht: Kluwer, 19–56.
  3. Friedlander, J., & Iwaniec, H. (1997) Using a parity-sensitive sieve to count prime values of a polynomial. Proc Nat Acad Sci., 94 (4), 1054–1058.
  4. Desboves, A. (1855) Sur un théorème de Legendre et son application à la recherché de limites qui comprennent entre elles des nombres premiers. Nouvelles Annales de Mathématiques – 1re série.; Tome 14: 281–295.
  5. Legendre, A.-M. (1801) Essai sur le Théorie des Nombres: Cambridge: Cambridge University Press, première partie 1801 – digitally printed 2009.
  6. Hardy, G. H., & Heilbronn, H. (1938) Edmund Landau. J Lond Math Soc., 13, 302–310.
  7. Cioabǎ, S. M., & Ram Murty, M. (2008) Expander graphs and gaps between primes. Forum Mathematicum, 20, 745–756.
  8. Oliveira e Silva, T., Herzog, S., & Pardi, S. (2014) Empirical verification of the even Goldbach Conjecture and computation of prime gaps up to 4.1018. Math Comp., 83, 2033–2060.
  9. Chen, J. (1975) On the Distribution of Almost Primes in an Interval. Scientia Sinica, 18, 611–627.
    Hardy, G. E., & Wright, E. M. (1979) An Introduction to the Theory of Numbers – 5th Edition. Oxford: Oxford University Press, p. 415.
  10. Ingham, A. E. (1937) On the difference between consecutive primes. Quarterly Journal of Mathematics Oxford, 8 (1), 255–266.
  11. Iwaniec, H. (1978) Almost-primes represented by quadratic polynomials. Inventiones Mathematicae, 178–188.
  12. Lemke Oliver, R. J. (2012) Almost-primes represented by quadratic polynomials. Acta Arith., 151, 241–261.
  13. Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences. 1973+. Sequence A050216.
  14. Jradi, W. (1988) Some Problems on Euler’s Phi-Function, PhD Thesis. Sydney: University of Technology Sydney.
  15. Matomäki, K. (2013) Carmichael numbers in arithmetic progressions. J Austral Math Soc., 94, 268–275.
  16. Conway, J. H., Dietrich, H., & O’Brien, E. A. (2008) Counting Groups: Gnus, Moas, and Other Exotica. Math Intell., 30, 6–18.
  17. Yates, S. (1982) Repunits and Repetends. Boynton Beach, FL: Star Publishing.
  18. Cramér, H. (1936) On the order of magnitude of the difference between consecutive prime numbers. Acta Arithmetica, 2, 23–46.
  19. Gardner, M. (1964) Mathematical Games: The Remarkable Lore of the Prime Number. Sci Amer., 210, 120–128.
  20. Snyder, V. (1912) The Fifth International Congress of Mathematicians, Cambridge, 1912. Bull Amer Math Soc., 19, 107–130.
  21. Hardy, G. H., & Littlewood, J. E. (1923) Some Problems of ‘Partitio Numerorum’; III: On the Expression of a Number as a Sum of Primes. Acta Math; 44, 1–70.
  22. Bateman, P. T., & Horn, R. A. (1962) A heuristic asymptotic formula concerning the distribution of prime numbers. Math Comp., 16, 363–367.
  23. Stein, M. L., Ulam, S. M., & Wells, M. B. (1964) A Visual Display of Some Properties of the Distribution of Primes. Amer Math Monthly., 71, 516–520.
  24. Atanassov, K. (2013). A formula for the n-th prime number. Comptes rendus de l’Academie Bulgare des Sciences, 66, 503–506.
  25. Ribenboim, P. (1997) Are there functions that generate prime numbers? College Math J., 28, 352–359.
  26. Vassilev-Missana, M. (2013) New Explicit Representations for the Prime Counting Function. Notes Number Th Discr Math., 19(3), 24–27.
  27. Sita Rama Chandra Rao, R., & Sita Ramaiah, V. (1979) Ramanujan Sums in Regular Arithmetical Convolutions. Math Stud., 45, 10–11.
  28. Maynard, J. (2015) Small gaps between primes. Ann Math., 181(1), 383–413.
  29. Leyendekkers, J. V., & Shannon, A. G. (2004) An extension of Euler’s prime generating function. Notes Number Th Discr Math., 10(4), 100–105.
  30. Zhang, Y. (2014) Bounded gaps between primes. Ann Math., 179, 1121–1174.
  31. Friedlander, J., & Iwaniec, J. (1997) Using a parity-sensitive sieve to count prime values of a polynomial. Proc Nat Acad Sci., 94, 1054–1058.

Related papers

Cite this paper

Shannon, A. G. & Leyendekkers, J. V. (2017). On Legendre’s Conjecture. Notes on Number Theory and Discrete Mathematics, 23(2), 117-125.

Comments are closed.