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1 Introduction 

At the 1912 International Congress of Mathematicians, in Cambridge UK, Edmund Landau of 
Georg-August-Universität Göttingen in a paper entitled “Geloste und ungelöste Problème aus 
der Theorie der Primzahlverteilung und der Riemann’schen Zetafunktion” [1] listed four basic 
problems about primes. They are now known as Landau’s problems. They are as follows (in 
slightly different terminology from that of Landau): 

• Goldbach conjecture: Can every even integer greater than 2 be written as the sum of 
two primes? [2] 

• Twin prime conjecture: Are there infinitely many primes p such that p + 2 is prime? [3]  
• Legendre’s conjecture: Does there always exist at least one prime between 

consecutive perfect squares? [4, 5] 
• Landau question: Are there infinitely many primes of the form n2 + 1? [6] 
These are among many other problems that are unsolved because of our limited 

knowledge of infinity, let alone gaps between consecutive primes and the need to attack them 
with asymptotic proofs [7]. 
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A table of maximal prime gaps shows that Legendre’s conjecture holds to 4×1018 [8]. A 
counterexample near 1018 would require a prime gap fifty million times the size of the average 
gap. The prime number theorem implies that the actual number of primes between n2 and (n + 
1)2 is asymptotic to n / ln(n). Since this number is large for large n, this lends credence to 
Legendre's conjecture, as does the work of Chen [9] who showed that a number P which is 
either a prime or semi-prime (now called Chen primes) does always satisfy this inequality. 
There is also always a prime between n – nθ and n, where θ  = 23 / 42  [10: 415]. 

This paper is partly expository and partly suggests a characteristic function to explore 
Legendre’s Conjecture further. 

2 Related conjectures 

Ingham [11], Iwaniec [12] and Lemke Oliver [13] have, in different approaches, considered 
gaps between primes or between squares of primes and near-square primes. Thus, Brocard’s 
conjecture [14] pertains to the squares of prime numbers, namely that, with the exception of 4, 
there are always at least four primes between the square of a prime and the square of the next 
prime. In terms of the prime counting function, this would mean that 

2 2
1( ) ( ) 3, 1n np p nπ π+ − > ∀ > . 

A strengthening of this conjecture would be that there are always at least four primes 
between n2 and (n + 2)2 for n ≥ 1. Some authors have also used arithmetic progressions and 
Carmichael numbers in their systematic approaches to the these problems [cf., 15, 16]. 

Iwaniec and Chen also utilise “almost-primes” and “semi-primes”. A number n with 

prime factorization 1
i

r a
iin p

=
=∏  is called k-almost prime if it has a sum of exponents 

1
r

ii a k
=

=∑ , that is, when the prime factor (multi-primality) function Ω(n) = k. The set of  

k-almost primes is denoted Pk. The primes which correspond to the “1-almost prime” numbers 
are prime numbers, and the 2-almost prime numbers are called semi-primes. Conway et al. 
[17] proposed calling these numbers primes, biprimes, triprimes, and so on. 

These add to modifications and refinements of the conjectures mentioned here, which 
like many more in the literature, have been checked computationally to huge powers of 10 by 
“Titans” [18]: a Titan, as defined by Samuel Yates (1919–1991), is anyone who has found a 
titanic prime. In 1984 he began the list of “Largest Known Primes” and coined the name titanic 
prime for any prime with 1,000 or more decimal digits. He also called those who proved their 
primality “titans”. Whether these conjectures will be proven analytically or numerically it is 
clear that new approaches need to be continually generated rather than follow the same 
methods and expect different results. 

Thus, Cramér’s Conjecture, formulated in 1936 by the Swedish mathematician Harald 
Cramér (1893–1985), is an estimate for the size of gaps between consecutive prime numbers 
[19]: intuitively, that gaps between consecutive primes are always small, and the conjecture 
quantifies asymptotically just how small they must be.  

More graphically, the Ulam spiral is a simple method of visualizing the prime numbers 
that reveals the apparent tendency of certain quadratic polynomials to generate unusually large 
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numbers of primes. It was discovered in 1963 by the mathematician Stanislaw Ulam  
(1909–1984), while he was doodling during the presentation of a “long and very boring paper” 

[20, 21].  
Hardy and Littlewood [22] stated a series of conjectures, one of which, if true, would 

explain some of the striking features of the Ulam spiral which Hardy and Littlewood called 
“Conjecture F” and which is a special case of the Bateman–Horn conjecture [23]: an assertion 
of an asymptotic formula for the number of primes of the form ax2 + bx + c. Ulam wrote down 
a regular rectangular grid of numbers as in Figure 1, starting with 1 at the center, and spiralling 
out. He then circled all the prime numbers in Figure 1 to get the spiral which appears in 
Figure 2 with the prime numbers almost in a pattern tending to line up along diagonals [24]. 

   

 
 

 

 
 

Figure 1: Ulam Spiral  Figure 2: Ulam Spiral Primes 

3 A characteristic function 

Papers by Atanassov [25], Ribenboim [26], and Vassilev-Missana [27] have considered 
alternative views of checking for primality.  In that spirit we define two arithmetic functions: 
the well-known divisor function δ (m, s) and a prime characteristic function ρ (n, s), 
respectively, by 

  (3.1) 

and 

  (3.2) 

Thus ρ (n, s) = 1 for n = s = 1, by default. Examples of ρ (n, s) are set out in Table 1. The 
primes head the columns which lack zeros. It can be seen that the table also illustrates the sieve 
of Eratosthenes. 
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 n → 
s↓ 

2 3 4 5 6 7 8 9 10 11  

 1 1 1 1 1 1 1 1 1 1 1  
 2 1 1 0 1 0 1 0 1 0 1  
 3 1 1 1 1 0 1 1 0 1 1  
 4 1 1 0 1 0 1 0 1 0 1  
 5 1 1 1 1 1 1 1 1 0 1  
 6 1 1 0 1 0 1 0 0 0 1  
 7 1 1 1 1 1 1 1 1 1 1  
 8 1 1 0 1 0 1 0 1 0 1  

Table 1. ρ (n, s) for n, s = 1, 2, …, 8 

These functions can be related to classical functions in the theory of numbers, such as. 

 
For example, 

 
Or Menon’s identity [28] can be re-written simply as 

,
 

in which (a, b) represents the highest common factor of a and b, ϕ (n) is Euler’s totient 
function, and σ0(n) represents the number of divisors of n. For instance, 
 

 

For notational convenience we simplify (3.2) when m = s = n by means of  

 
that is, 

 

For example, ρ 3 = 1 and ρ 4 = 0. In other words, ρ n is then the characteristic function of 
of the set of positive integers, n, which are either prime or unity. Therefore, 

;),(
1
∑
=

⎥⎦
⎥

⎢⎣
⎢=

n

i m
nimδ

.
2
63101010),2(

6

1
∑
=

⎥⎦
⎥

⎢⎣
⎢==+++++=

i
iδ

( )( )( ) )()(,, 0
1

nnnini
n

i
ϕσρ =∑

=

( )( )( ) ( ) ( ) ( ) ( )

( ) ( )

).6()6(
24

610001
)6,6()6,6()6,5()6,5(

)6,4()6,4()6,3()6,3()6,2()6,2()6,1()6,1(6,6,

0

6

1

ϕσ

ρρ

ρρρρρ

=
×=

+++++=
+

++++=∑
=

ii
i

);,( nnn ρρ ≡

⎩
⎨
⎧

=
.,0

,1,1
otherwise

primeorisnif
nρ



121 

 

where π (k) is the number of primes ≤ k so that we have Table 2, for example, 

 
  k 1 2 3 4 5 6 7 8   
  1+р(k) 1 2 3 3 4 4 5 5   

Table 2.  1 + π (k), k = 1, 2, ..., 8 

In what follows we pick out the nth prime as the (n + 1)st number in the support of ρn (the 
set of arguments for which the function is not zero). The nth prime, pn, is then given by the 
characteristic function (which is not a formula): 

  (3.3) 

In order to demonstrate this, we need 

  (3.4) 

Proof of (3.4): Let 

 

If then since 

 

and 

 

• If  then and , and  

• If  then 1 < n < K, since n < 1, and  

• If 1 < n < K,  then and 
 
and  

which completes the proof of (3.4). 
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Proof of (3.3): The right hand side of (3.3) is equal to 

 

as required. 
The main characteristic of the result is that one knows when pn has been reached by the 

first zero in the summation. At this point the process stops and the higher upper limit will not 
be needed. This result can also be expressed as a recurrence relation: 

  (3.5) 

It seems at first glance that the formulas require the knowledge of the first 2n prime 
numbers, but the process stops when the first zero appears in the summation. For instance, 
 

 

4 Concluding comments 

Can Legendre’s Conjecture be reformulated in terms of (ρ (n + 1)2 – ρ n2) by searching for a prime 
in the region ? That is, will there be primes in the region (2n + 1) 
after n2? The gap increases in size as n increases. Structural studies [29] indicate that the 
numbers of primes, while decreasing rapidly at very high integer values, becomes constant. An 
extension of Euler’s prime generating function in particular shows this [30]. This is consistent 
with the prime gap reaching a limit of 70 million [31]. The largest prime, discovered relatively 
recently by Dr Curtis Cooper, the Editor of The Fibonacci Quarterly at the University of 
Central Missouri has 22 million digits. There is hardly a dearth of primes in this region if the 
gap has only 8 digits. 

For small to moderate n it is true that there is a prime in this region since the prime gap is 
always smaller than 2n + 1. For larger n, for example,  
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n = 80,873,624,627,234,849 
 

the prime gap is 1,220, which is smaller than 2n + 1. When large gaps of, for example, 
2,254,930 occur the smallest prime in the region has 81,853 digits, so that 2n + 1 is larger than 
the gap [cf. 32]. All the evidence so far shows that the prime gaps are always smaller than the 
numbers in the region [8]. For instance, in the region of the prime 
 

1,125,406,185,245,561 
 

the gaps range from 800 to 900 with one around 1200. For the prime region 
 

1,425,172,824,437,699,411 
 

the gap is around 1476. The limiting prime gap is approximately 70 million (8 digits), but the 
integers in such regions have hundreds of digits. Hence one expects primes between two 
adjacent squares on the grounds that the numbers are larger than the prime gaps; that is, the 
basis of asymptotic proof approaches that when n approaches infinity 2n should contain 
primes.  
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