On function “Restrictive factor”

Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 22, 2016, Number 2, Pages 17—22
Download full paper: PDF, 172 Kb


Authors and affiliations

Krassimir T. Atanassov
Department of Bioinformatics and Mathematical Modelling
IBPhBME – Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia–1113, Bulgaria

Intelligent Systems Laboratory
Prof. Asen Zlatarov University
Prof. Yakimov Blvd., Bourgas–8000, Bulgaria


Some new properties of the arithmetic function called “Restrictive factor” are formulated and studied.


  • Arithmetic function
  • Restrictive factor

AMS Classification

  • 11A25


  1. Atanassov, K. (2002) Restrictive factor: definition, properties and problems, Notes on Number Theory and Discrete Mathematics, 8(4), 117–119.
  2. Panaitopol, L. (2004) Properties of the Atanassov functions. Advanced Studies on Contemporary Mathematics, 8(1), 55–59.
  3. Sandor, J., & Mitrinovic, D. S. (1995) Handbook of number theory, Kluwer Acad. Publ.
  4. Spiegelhalter, P., & Zaharescu, A. (2011) Strong and weak Atanassov pairs, Proceedings of the Jangjeon Mathematical Society,14(3), 355–361.

Related papers

Atanassov, K. & Sándor, J. (2019). Extension factor: definition, properties and problems. Part 1. Notes on Number Theory and Discrete Mathematics, 25(3), 36-43, doi: 10.7546/nntdm.2019.25.3.36-43.

Cite this paper

Atanassov, K. T. (2016). On function “Restrictive factor”. Notes on Number Theory and Discrete Mathematics, 22(2), 17-22.

Comments are closed.