Krassimir Atanassov
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 20, 2014, Number 2, Pages 1–5
Full paper (PDF, 146 Kb)
Details
Authors and affiliations
Krassimir Atanassov ![]()
Department of Bioinformatics and Mathematical Modelling
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria
Abstract
A new extension of the concept of Fibonacci–like sequences is constructed, related to Lucas sequence. Some of its properties are discussed.
Keywords
- Fibonacci number
- Lucas number
- Sequence
AMS Classification
- 11B39
References
- Atanassov, K. On two new 2-Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, Vol. 11, 2005, No. 4, 12–16.
- Atanassov, K. A new direction of Fibonacci sequence modification. Notes on Number Theory and Discrete Mathematics, Vol. 12, 2006, No. 1, 25–32.
- Atanassov, K. Three-dimensional extensions of Fibonacci sequences. Part 1. Notes on Number Theory and Discrete Mathematics, Vol. 14, 2008, No. 3, 15–18.
- Atanassov, K. Combined 2-Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, Vol. 16, 2010, No. 2, 24–28.
- Atanassov, K. Pulsating Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, No. 3, 12–14.
- Atanassov, K., V. Atanassova, A. Shannon, J. Turner. New Visual Perspectives on Fibonacci Numbers. World Scientific, New Jersey, 2002.
- Atanassov, K., A. Shannon. Fibonacci planes and spaces, in (F. Howard, Ed.) Applications of Fibonacci Numbers, Vol. 8, Dordrecht, Kluwer, 1999, 43–46.
- Atanassov, K., A. Shannon. A Fibonacci cylinder, Number Theory and Discrete Mathematics, Vol. 14, 2008, No. 4, 4–9.
- Atanassova, V., A. Shannon, K. Atanassov. Sets of extensions of the Fibonacci sequence. Comptes Rendus de l’Academie bulgare des Sciences, Tome 56, 2003, No. 9, 9–12
Related papers
- Ma, T., Vernon. R., & Arora, G. (2024). Generalization of the 2-Fibonacci sequences and their Binet formula. Notes on Number Theory and Discrete Mathematics, 30(1), 67-80.
Cite this paper
Atanassov, K. (2014). A Set of Lucas Sequences. Notes on Number Theory and Discrete Mathematics, 20(2), 1-5.
