Lee Chae Jang, Taekyun Kim and Hong Kyung Раk

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 8, 2002, Number 1, Pages 21—27

**Download full paper: PDF, 2427 Kb**

## Details

### Authors and affiliations

Lee Chae Jang

*Department of Math, and Comput. Sciences Konkuk University, Chungju, S. Korea
*

Taekyun Kim

*Institute of Science Education Kongju National University, Kongju, S. Korea*

Hong Kyung Раk

*Department of Mathematics Kyungsan University, Kyungsan, S. Korea*

### Abstract

In the recent paper, we defined the *h*-extension of *q*-Bernoulli number by using multiple *p*-adic *q*-integral and constructed the *h*-extension of complex analytic *q-L*-series which interpolates the *h*-extension of *q*-Bernoulli numbers, cf. [2], [4], [5]. The purpose of this paper is to construct a *h*-extension of *p*-adic *q-L*-function which interpolates the *h*-extension of *q*-Bernoulli numbers at non-positive integers.

### Keywords

- Bernoulli numbers
*p*-adic*q-L*-function*p*-adic*q*-integrals

### 2010 Mathematics Subject Classification

- 11B68
- 11S80

### References

- T. Kim et al, A note on the analogs of p-adic L-functions and sums of powers, Notes on Number Theory and Discrete Math. 7 No. 3 (2001).
- T. Kim and S.H. Rim, Generalized Carlitz’s q-Bernoulli numbers in the p-adic number field, Advanced Stud. Contemp. Math. 2 (2000), 9-19.
- T. Kim, On explicit formulas of p-adic q-L-functions, Kyushu J. Math. 48 (1994), 73-86.
- T. Kim, H.S. Kim, On the values of p-adic q-L-functions, Pusan Kyoungnam Math. J. 11 (1995), 55-64.
- T.Kim, A note on p-adic q-Dedekind Sums, Comptes Rend. L’Acad. Bulga. Sci. 54 (2001), 37-42.
- T. Kim, On certain values of p-adic q-L-functions, Rep. Fac. Sci. Engrg. Saga Univ. Math. 23 (1996), 1-7.
- N. Kobiltz, On Carlitz’s q-Bernoulli numbers, J. Number Theory 14 (1982), 332-339.
- J. Satoh, q-analogue of Riemann’s (ζ-function and q-Euler numbers, J. Number Theory 31 (1989), 346-362.
- L. C. Washington, p-adic L-functions and sums of powers, J. Number Theory 69 (1998), 50-61.

## Related papers

## Cite this paper

Jang, L. C., Kim, T., & Pak, H. K. (2002). On the values of *p*-adic *q-L*-functions. II. Notes on Number Theory and Discrete Mathematics, 8(1), 21-27.