How Fermat’s Great Theorem helps solving the Diophantine equation 12.x3φ(y).y2 = 3.(φ(y))3

M. Vassilev-Missana
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 7, 2001, Number 4, Pages 132—134
Download full paper: PDF, 102 Kb

Details

Authors and affiliations

M. Vassilev-Missana
5, V. Hugo Str., Sofia-1124, Bulgaria.

References

  1. Edvards, H. Fermat’s Last Theorem. Springer-Verlag, New York, 1977.
  2. Vassilev, M. How to solve the Diophantine equation A3 + (A + l)3 + (A + 2)x3 = B3.. Bull, of Number Theory and Related Topics, Vol. X, 1986, 27-31.

Related papers

Cite this paper

Vassilev-Missana, M. (2001). How Fermat’s Great Theorem helps solving the Diophantine equation 12.x3φ(y).y2 = 3.(φ(y))3. Notes on Number Theory and Discrete Mathematics, 7(4), 132-134.

Comments are closed.