Daeyeoul Kim
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 3, 1997, Number 4, Pages 181—184
Download full paper: PDF, 156 Kb
Details
Authors and affiliations
Daeyeoul Kim
Department of Mathematics.
Chonbuk National University,
Chonju. 5G1-75G Korea
Abstract
Let be modular discriminant and
, where
be Dedekind
-function.
(a)
(b)
References
- T. Apostol, Modular functions and Dirichlet series in Number theory. Springer -Verlag. New York, CJTM 41. 1976.
- K. Chandrasekharan. Elliptic Functions. Springer -Verlag. Grundlehren der mathematischen wis-sensrhaften 281. 1985.
- S. Chowla, Remarks on class-invariants and related topics. Seminar on Complex multiplication. Lecture Notes in Math 21 (1966), IV.1-10, Springer-Verlag, New York.
- E. Grosswald and H. Rachmacher. Dedekind sums, Cams Math. Monograph, Math. Assoc. of America. Providence. RI, 1972.
- K. Heon, Sphere packings and Jacobi theta series, master thesis of Chonbuk National Univ. (1997).
- P. Hwasin and K. Daeyeoul. A remark: of the Dedekind
-function and
-series, E.1MS 5. no. 4 (1997), 611-622, Pushpa Publishing House, India.
- P. Hwasin and K. Daeyeoul, A study of the Dedekind
-function and modular discriminant, preprint.
- A. W. Knapp, Elliptic Curves, Mathematical Notes 40, Princeton University, Princeton, New .Jersey. 1992.
- S. Lang, Elliptic functions, Addison-Wesley, London, 1973.
- D. H. Lehmer. Ramanujan’s function r(n), Duke Math. J. 10 (1943), 483-492.
- A. OGG, Survey of modular functions of one variable, Modular Functions of One Variable I, Lecture Notes in Math 320 10 (1973), 1 35, Springer-Verlag, New York.
- G. Shimura. Introduction to the Arithmetic Theory of Automorphic Forms, Princeton Univ. Press, Princeton, N.J, 1971.
- C. L. Siegel, Topics m complex function theory, vol 1,2. Wiley-Interscience, 1969.
- H. Silverman. Advanced Topics in the. Arithmetic of Elliptic Curves, Springer Verlag. New York, 1994.
- The Arithmetic of Elliptic Curves, Springer -Verlag, New York, 1986.
- H. Stark. The Coates-Wilc.9 theorem revisited. In Number Theory related to Fermat’s Last. Theorem, N. Koblitz, ed. Birkhauser. Boston (1982). 349-362.
- T. Tate, The Arithmetic of Elliptic Curves, Invent. Math. 23 (1974), 171-206
Cite this paper
Kim, D. (1997). A relation of modular discriminant Δ(τ). Notes on Number Theory and Discrete Mathematics, 3(4), 181-184.