Some special triangular numbers and recurring sequences

Adina Di Porto and Piero Filipponi
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132
Volume 1, 1995, Number 1, Pages 11—26
Download full paper: PDF, 8.7 Mb

Details

Authors and affiliations

Adina Di Porto
Fondazione Ugo Bordoni Via B. Castiglione 59, 1-00142 Rome, Italy

Piero Filipponi
Fondazione Ugo Bordoni Via B. Castiglione 59, 1-00142 Rome, Italy

Abstract

A cute note [1] which recently appeared in literature puts into evidence the interrelationships among triangular numbers, square numbers, and certain second-order linear recurring sequences. In this paper we extend these results by studying properties of the triangular numbers which are also g-gonal numbers (g ≥ 4).

AMS Classification

  • 11D09
  • 11A07
  • 11B39

References

  1. K.B. Subramaniam. “A Simple Computation of Square-triangular Numbers.” Int. J. Math. Educ. Sci. Technol. 23. 5 (1992): 790-793.
  2. N.J.A. Sloane. A Handbook of Integer Sequences. San Diego (CA): Academic Press Inc., 1973.
  3. A.F. Horadam. “Generalization of a Result of Morgado.” Portugaliae Mathematica, 44. 2 (1987): 131-136.
  4. L.E. Dickson. History of the Theory of Numbers, Vol II. New York: Chelsea, 1992.
  5. P. Filipponi. “Recurrences for Decimated Recurring Sequences.” Int. J. Math. Educ. Sci. Technol. 25. 1 (1994): 148-150.
  6. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section. Chichester (UK): Ellis Horwood Ltd., 1989.
  7. V.E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969.
  8. L. Ming. “On Triangular Fibonacci Numbers.” The Fibonacci Quarterly 27. 2 (1989): 98-108.
  9. I. M. Vinogradov. Elements of Number Theory. New York: Dover, 1954.
  10. O. Brugia, A. Di Porto & P. Filipponi. “On Certain Fibonacci-type Sums.” Int. J. Math. Educ. Sci. Technol. 22.4(1991): 609-613.
  11. Filipponi & H.T. Freitag. “The Zeckendorf Representation of {Fkn / Fn}.” in
    Applications of Fibonacci Numbers, Vol.5, pp. 217-219. Dordrecht: Kluwer, 1993.
  12. E. T. Jacobson. “Distribution of the Fibonacci Numbers Mod 2k.” The Fibonacci Quarterly 30. 3 (1992): 211-215.
  13. Bro. A. Brousseau. An Introduction to Fibonacci Discovery. San Jose (CA): The Fibonacci Association, 1965.

Related papers

Cite this paper

Di Porto, A. and Filipponi, P. (1995). Some special triangular numbers and recurring sequences. Notes on Number Theory and Discrete Mathematics, 1(1), 11-26.

Comments are closed.