Yasutsugu Fujita and Maohua Le
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 3, Pages 123–129
DOI: 10.7546/nntdm.2021.27.3.123-129
Full paper (PDF, 186 Kb)
Details
Authors and affiliations
Yasutsugu Fujita
Department of Mathematics, College of Industrial Technology, Nihon University
2-11-1 Shin-ei, Narashino, Chiba, Japan
Maohua Le
Institute of Mathematics, Lingnan Normal College
Zhangjiang, Guangdong, 524048 China
Abstract
For any positive integer , let ord denote the order of in the factorization of . Let be two distinct fixed positive integers with . In this paper, using some elementary number theory methods, the existence of positive integer solutions of the polynomial-exponential Diophantine equation with is discussed. We prove that if and ord ord, then has no solutions with . Thus it can be seen that if or , where means either and or and , then has no solutions .
Keywords
- Polynomial-exponential Diophantine equation
- Pell’s equation
2020 Mathematics Subject Classification
- 11D61
References
- Bennett, M. A., & Skinner, C. M. (2004). Ternary Diophantine equations via Galois representations and modular forms. Canadian Journal of Mathematics, 56, 23–54.
- Cohn, J. H. E. (2002). The Diophantine equation (an − 1)(bn − 1) = x2. Periodica Mathematica Hungarica, 44, 169–175.
- Guo, X.-Y. (2013). A note on the Diophantine equation (an − 1)(bn − 1) = x2. Periodica Mathematica Hungarica, 66, 87–93.
- Hajdu, L., & Szalay, L. (2000). On the Diophantine equations (2n − 1)(6n − 1) = x2 and (an − 1)(akn − 1) = x2. Periodica Mathematica Hungarica, 40, 141–145.
- Ishii, K. (2016). On the exponential Diophantine equation (an − 1)(bn − 1) = x2. Publicationes Mathematicae Debrecen, 89, 253–256.
- Le, M.-H. (2009). A note on the exponential Diophantine equation (2n − 1)(bn − 1) = x2. Publicationes Mathematicae Debrecen, 74, 401–403.
- Le, M.-H., & Soydan, G. (2020). A brief survey on the generalized Lebesgue–Ramanujan–Nagell equation. Surveys in Mathematics and its Applications, 15, 473–523.
- Li, L., & Szalay, L. (2010). On the exponential Diophantine equation (an − 1)(bn − 1) = x2. Publicationes Mathematicae Debrecen, 77, 465–470.
- Li, Z.-J. (2011). Research for the solution of the Diophantine equation (an − 1)(bn − 1) = x2. Master’s thesis, Wuhu: Anhui Normal University (in Chinese).
- Li, Z.-J., & Tang, M. (2010). On the Diophantine equation (2n − 1)(an − 1) = x2. Journal of Anhui Normal University, Natural Science, 33, 515–517 (in Chinese).
- Li, Z.-J., & Tang, M. (2011). A remark on a paper of Luca and Walsh. Integers, 11, 827–832.
- Liang, M. (2012). On the Diophantine equation (an − 1)((a + 1)n − 1) = x2. Journal of Mathematics (Wuhan), 32, 511–514 (in Chinese).
- Luca, F., & Walsh, P. G. (2002). The product of like-indexed terms in binary recurrences. Journal of Number Theory, 96, 152–173.
- Mordell, L. J. (1969). Diophantine Equations, London: Academic Press.
- Noubissie, A., Togbe, A., & Zhang, Z.-F. (2020). On the exponential Diophantine equation (an − 1)(bn − 1) = x2. The Bulletin of the Belgian Mathematical Society, 27, 161–166.
- Szalay, L. (2000). On the Diophantine equation (2n − 1)(3n − 1) = x2. Publicationes Mathematicae Debrecen, 57, 1–9.
- Tang, M. (2011). A note on the exponential Diophantine equation (am − 1)(bn − 1) = x2. Journal of Mathematical Research and Exposition, 31, 1064–1066.
- Yang, H., Pei, Y.-T., & Fu, R.-Q. (2016). The solvability of the Diophantine equation (an − 1)((a + 1)n − 1) = x2. Journal of Xiamen University, Natural Science, 55, 91–93 (in Chinese).
- Yang, S.-C., Wu, W.-Q., & Zheng, H. (2011). The solution of the Diophantine equation (an − 1)(bn − 1) = x2. Journal of Southwest University, Natural Science, 37, 31–34 (in Chinese).
- Yuan, P.-Z., & Zhang, Z.-F. (2012). On the Diophantine equation (an − 1)(bn − 1) = x2. Publicationes Mathematicae Debrecen, 80, 327–331.
Related papers
Cite this paper
Fujita, Y. & Le, M. (2021). A note on the polynomial-exponential Diophantine equation (an − 1)(bn − 1) = x2. Notes on Number Theory and Discrete Mathematics, 27(3), 123-129, DOI: 10.7546/nntdm.2021.27.3.123-129.