Mihoub Bouderbala and Meselem Karras
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367-8275
Volume 26, 2020, Number 4, Pages 52–56
DOI: 10.7546/nntdm.2020.26.4.52-56
Full paper (PDF, 156 Kb)
Details
Authors and affiliations
Mihoub Bouderbala
Institute of Mathematics-USTHB, LA3C
Houari-Boumédiène University of Science and Technology
Bab Ezzouar, Algeria
Meselem Karras
Djilali Bounaama Khemis Miliana University
FIMA Laboratory, Algeria
Abstract
In this paper, we obtain asymptotic formula on the sum where denote the number of distinct prime divisors of and denotes the integer part of
Keywords
- Number of distinct prime divisors
- Mean value
- Integer part
2010 Mathematics Subject Classification
- 11N37
- 11A25
- 11N36.
References
- Balazard, M. (2017). Sur la variation totale de la suite des parties fractionnaires des quotients d’un nombre réel positif par les nombres entiers naturels consécutifs, Mosc. J. Comb. Number Theory, 7, 3–23.
- Bordellès, O. (2012). Arithmetic Tales, Springer.
- Diaconis, (1976). Asymptotic expansions for the mean and variance of the number of prime factors of a number n, Technical Report No. 96, Department of Statistics, Stanford University.
- Hardy, G. H., & Ramanujan, S. (1917). The normal number of prime factors of a number n. Quart. J. Math., 48, 76 − 92.
- Rieger, G. J. (1972). Uber einige arithmetische Summen. Manuscripta Math., 7, 23–34.
- Safari, B. (1970). Sur quelques applications de la méthode de l’hyperbole de Dirichlet a la théorie des nombres premiers, Enseignement Math., 14, 205–224.
Related papers
Cite this paper
Bouderbala, M. & Karras, M. (2020). On a sum involving the number of distinct prime factors function related to the integer part function. Notes on Number Theory and Discrete Mathematics, 26 (4), 52-56, DOI: 10.7546/nntdm.2020.26.4.52-56.