A new continued fraction for Euler’s constant

Aldo Peretti
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 3, 1997, Number 1, Pages 23–34
Full paper (PDF, 344 Kb)

Details

Authors and affiliations

Aldo Peretti
Facultad de Ciencia y Tecnologia – Universidad del Salvador
Rodriguez Peña 640
(1020) Buenos Aires, Argentina

Abstract

A new continued fraction is obtained for Euler constant C, namely:

    \[C = \frac{1}{2} - \frac{1}{3} = \Bigg \{ \frac{ \Big ( \frac{2r - 1}{r-1} \Big )^2 \mid }{ \mid \frac{-2^r  + r}{r(r+1)} } + \frac{2^r + r \mid}{ \mid r^2} +  r^2 \Big \{ \frac{(2^r + m)^2 \mid }{ \mid 1}  \Big \}_{m=1}^{m=2^r - 1}  \Bigg \}_{r = 2}^{r = \infty} \]

It is considered the possibility to prove the irrationality and transcendency of the constant by means of this expansion.

References

  1. R. Ayoub: “Partial triumph or total failure?”. Math. Intelligencer, vol. 7, N° 2 (1985) p. 55-58.
  2. D. Bailey: “Numerical results on the transcendence of constants involving \pi, e and Euler’s constant”. Math. Comp. vol. 50, (1988) p. 275-282
  3. W. A. Beyer and M. S. Waterman: “Error analysis of a computation of Euler’s constant”. Math. Comp. vol. 28 (1974) p. 599-604
  4. W. A. Beyer and M. S. Waterman: “Decimals and partial quotients of Euler’s constant and Ln2”. Math. Comp. vol. 28 (1974) p. 667
  5. R. P. Brent: “Computation of the regular continued fraction for Euler’s constant”. Math. Comp. vol. 31 (1977) p. 771-777
  6. R. P. Brent and E. Me. Millan: “Some new algorithms for high precision computation of Euler’s constant”. Math. Comp. vol. 34 (1980) p. 305-312
  7. A. Froda: “La constante d’Euler est irrationelle”. Atti. Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. (8) 38 (1965) p. 338-344
  8. A. Froda: “Nouveaux criteres parametriques d’irrationalite”. C. R. Acad. Sci. Paris 261 (1965) p. 3012-3015
  9. J. W. Glaisher: “History of Euler’s constant”. Messenger of Math. Vol. 1 (1872) p. 25- 30
  10. H. W. Gould: “Some formulas for Euler’s constant”. Bull. Numb. Theory. Vol. X (1986) N° 2, p. 2-9
  11. Hermite-Stieltjes: Correspondance. Lettre 216, p.459, Gauthier Villars, Paris (1905).
  12. S. Selberg: “Bemerkung zu einer arbeit von Viggo Bran über die Riemannsche zetafunktion”. Norske Vid. Selsk. Forh. XIII N° 5 (1940), p. 17-19
  13. D. W. Sweeney: “On the computation of Euler’s constant”. Math. Comp. 17 (1963), p. 170-178
  14. O. Perron: “Die Lehre von Kettenbriichen”. 2nd. Edition, 1929. Teubner, Leipzig
  15. C. Brezinski: “History of Continued Fractions and Pade Approximants”. Springer Verlag. 1991
  16. G. Carr: “Formulas and theorems in Mathematics”. Chelsea edition.

Related papers

Cite this paper

Peretti, A. (1997). A new continued fraction for Euler’s constant. Notes on Number Theory and Discrete Mathematics, 3(1), 23-34.

Comments are closed.