On arithmetic functions and a trigonometrical product

J. Sándor and L. Tóth
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 7, 2001, Number 1, Pages 6–9
Full paper (PDF, 140 Kb)

Details

Authors and affiliations

J. Sándor
Babes-Bolyai University, Cluj, ROMANIA

L. Tóth
Janus-Pannonius University, Pecs, HUNGARY

Abstract

In what follows we shall study certain arithmetic functions with application to the study of some trigonometrical products.

References

  1. I. Crenga. et al., Introduction to the Theory of Numbers, Bucharest, 1965 (in
    Romanian).
  2. M. Deaconescu and J. Sándor, On the cyclomatic polynomial. Algebra. National
    conference, Timisoara, June 1986.
  3. S. W. Golomb, The lambda method in prime number theory, J. Number Theory, 2, 1970, 193-198.
  4. E. Gyarmati and P. Turan, A Course in Number Theory, Budapest, 1980 (in
    Hungarian).
  5. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Oxford, 1968.
  6. I. Niven and H. S. Zuckerman, Bevezetes a szamelmeletbe, Mriszaki K., Budapest,
    1978.
  7. L. Panaitopol, Proposed Problem 2, Gaz. Mat. Perf. Met. 3-4. 1985, 192.
  8. G. Polya and G. Szego, Anfgaben und Lehrsatze aus der Analysis, Leipzig, 1924.
  9. I. Z. Ruzsa. Arithmetical functions. Mat. Lapok, Budapest,27, 1976-79, 95-145.
  10. Gh. Siretchi, Differential and Integral Calculus, Vol. II, Bucharest, 1985 (in
    Romanian).
  11. L. Toth. An arithmetical functions, Sem. “Didactica Mat.”, 1984-1985, Cluj, Romania (in Romanian).

Related papers

Cite this paper

Sándor, J. & Tóth, L. (2001). On arithmetic functions and a trigonometrical product. Notes on Number Theory and Discrete Mathematics, 7(1), 6-9.

Comments are closed.