Emil Daniel Schwab and Barnabás Bede
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 20, 2014, Number 2, Pages 65–73
Full paper (PDF, 185 Kb)
Details
Authors and affiliations
Emil Daniel Schwab
Department of Mathematical Sciences, The University of Texas at El Paso
El Paso, TX 79968, USA
Barnabás Bede
Department of Mathematics, DigiPen Institute of Technology
Redmond, WA 98052, USA
Abstract
The paper deals with a broken Dirichlet convolution ⊗ which is based on using the odd divisors of integers. In addition to presenting characterizations of ⊗-multiplicative functions we also show an analogue of Menon’s identity:
where (a, n)⊗ denotes the greatest common odd divisor of a and n, φ⊗(n) is the number of integers a (mod n) such that (a, n)⊗ = 1, τ(n) is the number of divisors of n, and τ2(n) is the number of even divisors of n.
Keywords
- Dirichlet convolution
- Möbius function
- Multiplicative arithmetical functions
- Menon’s identity
AMS Classification
- 11A25
References
- Content, M., F. Lemay, P. Leroux, Catégories de Möbius et fonctorialités: Un cadre général pour l’inversion de Möbius, J. Combin. Theory Ser. A, Vol. 28, 1980, 169–190.
- Davison, T. M. K. On arithmetic convolutions, Canad. Math. Bull., Vol. 9, 1966, 287–296.
- Haukkanen, P. On the Davison convolution of arithmetical functions, Canad. Math. Bull., Vol. 32, 1989, 467–473.
- Haukkanen, P. On a formula for Euler’s totient function, Nieuw Arch. Wisk., Vol. 17, 1999, 343–348.
- Haukkanen, P. Menon’s identity with respect to a generalized divisibility relation, Aequationes Math., Vol. 70, 2005, 240–246.
- Kesava Menon, P. On the sum ∑(a − 1, n)[(a, n) = 1], J. Indian Math. Soc., Vol. 29, 1965, 155–163.
- Lawvere, F. W., M. Menni, The Hopf algebra of Möbius intervals, Theory and Appl. of Categories, Vol. 24, 2010, 221–265.
- Leinster, T. Notions of Möbius inversion, arXiv: 1201.0413 (2012).
- Leroux, P. Les catégories de Möbius, Cah. Topol. Géom. Diffé. Catég., Vol. 16, 1975, 280–282.
- McCarthy, P. J. Introduction to Arithmetical Functions Springer-Verlag, 1986.
- Schwab, E. D. Complete multiplicativity and complete additivity in Möbius categories,Italian J. Pure and Appl. Math., Vol. 3, 1998, 37–48.
- Schwab, E. D. Dirichlet convolution, bicyclic semigroup and a breaking process, Int. J. Number Th., Vol. 9, 2013, 1961–1972.
Related papers
Cite this paper
Schwab, E. D. & Bede, B. (2014). A note on a broken Dirichlet convolution. Notes on Number Theory and Discrete Mathematics, 20(2), 65-73.