On ternary biquadratic Diophantine equation
11(x2y2) + 3(x + y ) =10z4

S. Vidhyalakshmi, M. A. Gopalan, S. A. Thangam and Ö. Özer
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 3, Pages 65-71
DOI: 10.7546/nntdm.2019.25.3.65-71
Full paper (PDF, 91 Kb)

Details

Authors and affiliations

S. Vidhyalakshmi
Department of Mathematics, Shrimati Indira Gandhi College
Trichy-620002, Tamil Nadu, India

M. A. Gopalan
Department of Mathematics, Shrimati Indira Gandhi College
Trichy-620002, Tamil Nadu, India

S. A. Thangam
Department of Mathematics, Shrimati Indira Gandhi College
Trichy-620002, Tamil Nadu, India

Ö. Özer
Department of Mathematics, Faculty of Science and Arts, Kırklareli University
Kırklareli, 39100, Turkey

Abstract

We obtain infinitely many non-zero integer triples (x, y, z) satisfying the non-homogeneous bi-quadratic equation with three unknowns 11(x2y2) + 3(x + y) =10z4. Various interesting properties among the values of x, y, z are presented. Some relations between the solutions and special numbers are exhibited.

Keywords

  • Ternary bi-quadratic
  • Integer solutions
  • Pell equations

2010 Mathematics Subject Classification

  • 11D25
  • 11D09

References

  1. Carmichael, R. D. (1959). The Theory of Numbers and Diophantine Analysis, Dover Publications, New York.
  2. Dickson, L. E. (2005). History of Theory of Numbers, Diophantine Analysis. Volume 2, Dover Publications, New York.
  3. Gopalan, M. A., Vidhyalakshmi, S., & Devibala, S. (2010). Ternary bi-quadratic Diophantine equation {{2}^{4n+3}}({{x}^{3}}-{{y}^{3}})={{z}^{4}}. Impact J. Sci. Tech, 4 (3), 57-60.
  4. Gopalan, M. A., & Sangeetha, G. (2011). Integral solutions of ternary non-homogeneous bi-quadratic equation {{x}^{4}}+{{x}^{2}}+{{y}^{2}}-y={{z}^{2}}+z, Acta Ciencia Indica, XXXVIIM (4), 799-803.
  5. Gopalan, M. A., Vidhyalakshmi, S., & Sumathi, G. (2012). Integral solutions of ternary bi-quadratic non-homogeneous equation\left( \alpha +1 \right)\ \left( {{x}^{2}}+{{y}^{2}} \right)+\left( 2\alpha +1 \right)xy={{z}^{4}}, JARCE, 6 (2), 97-98.
  6. Gopalan, M. A., Sumathi, G., & Vidhyalakshmi, S. (2012). Integral solutions of ternary non-homogeneous bi-quadratic equation (2k+1)\ ({{x}^{2}}+{{y}^{2}}+xy)={{z}^{4}}, Indian Journal of Engineering, 1 (1), 37-39.
  7. Gopalan, M.A. Vidhyalakshmi, S. Lakshmi, K. (2012). On the bi-quadratic equation with four unknowns{{x}^{2}}+xy+{{y}^{2}}={{({{z}^{2}}+zw+{{w}^{2}})}^{2}}, IJPAMS, 5 (1), 73-77.
  8. Gopalan, M. A., Sumathi, G., & Vidhyalakshmi, S. (2013). On the ternary bi-quadratic non-homogeneous equation {{x}^{2}}+n{{y}^{3}}={{z}^{4}}, Cayley J.Math, 2(2), 169-174.
  9. Gopalan, M. A., & Sivakami, B. (2013). Integral solutions of quartic equation with four unknowns {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz+2(x+y){{w}^{3}}, Antartica J. Math., 10(2), 151-159.
  10. Gopalan, M. A., Vidhyalakshmi, S., & Kavitha, A. (2013). Integral solutions to the bi-quadratic equation with four unknowns {{(x+y+z+w)}^{2}}=xyzw+1, IOSR, 7(4), 11-13.
  11. Gopalan, M. A., Sangeetha, S., & Somanath, M. (2015). Integer solutions of non-homogeneous biquadratic equation with four unknowns 4({{x}^{3}}-{{y}^{3}})=31({{k}^{2}}+3{{s}^{2}})z{{w}^{2}}, Jamal Academic Research Journal, Special Issue, 296-299.
  12. Gopalan, M. A., Vidhyalaksfmi, S., & Özer, Ö. (2018). A Collection of Pellian Equation (Solutions and Properties), Akinik Publications, New Delhi.
  13. Meena, K., Vidhyalakshmi, S., Gopalan, M. A., & Thangam, S. A. (2014). On the
    bi-quadratic equation with four unknowns {{x}^{3}}+{{y}^{3}}=39z & {{w}^{3}}, International Journal of Engineering Research Online, 2(1), 57 -60.
  14. Mordell, L. J. (1969). Diophantine Equations, Academic press, New York.
  15. Telang, S. G. (1996). Number Theory, Tata Mc Graw Hill Publishing Company, New Delhi.
  16. Vijayasankar, A., Gopalan, M. A., & Kiruthika, V. (2018). On the bi-quadratic Diophantine equation with three unknowns 7({{x}^{2}}-{{y}^{2}})+x+y=8{{z}^{4}}, International Journal of Advanced Scientific and Technical Research, 1 (8), 52-57.

Related papers

Cite this paper

Vidhyalakshmi, S., Gopalan, M. A.,Thangam, S. A. & Özer, Ö. (2019). On ternary biquadratic Diophantine equation 11(x2y2) + 3(x + y ) =10z4 . Notes on Number Theory and Discrete Mathematics, 25(3), 65-71, DOI: 10.7546/nntdm.2019.25.3.65-71.

Comments are closed.