On Terai’s exponential equation with two finite integer parameters

Takafumi Miyazaki
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 1, Pages 84–107
DOI: 10.7546/nntdm.2019.25.1.84-107
Full paper (PDF, 247 Kb)

Details

Authors and affiliations

Takafumi Miyazaki
Division of Pure and Applied Science
Faculty of Science and Technology
Gunma University
1-5-1 Tenjin-cho, Kiryu, Gunma, Japan

Abstract

Let r be an integer with r > 1, and m be an even positive integer. Define integers A and B by the equation A + B √−1 = (m + √−1)r. It is proven by F. Luca in 2012 that the equation |A|x + |B|y = (m2 + 1)z does not hold for any triple (x, y, z) of positive integers not equal to (2, 2, r), whenever r or m exceeds some effectively computable absolute constant. In our previous work, we estimated this constant explicitly. Here that estimate is substantially improved.

Keywords

  • Exponential Diophantine equation
  • Linear forms in logarithms of algebraic numbers

2010 Mathematics Subject Classification

  • 11D61
  • 11J86

References

  1. Bugeaud, Y. (1999). Linear forms in p-adic logarithms and the Diophantine equation (xn – 1)/(x – 1) = yq. Math. Proc. Cambridge Phil. Soc., 127 (3), 373–381.
  2. Cao, Z. & Dong, X. (2002). On the Terai-Jeśmanowicz conjecture. Publ. Math. Debrecen, 61 (3–4), 253–265.
  3. Cao, Z. & Dong, X. (2003). An application of a lower bound for linear forms in two logarithms to the Terai-Jeśmanowicz conjecture. Acta Arith., 110 (2), 153–164.
  4. Cipu, M. & Mignotte, M. (2009). On a conjecture on exponential Diophantine equations. Acta Arith., 140 (3), 251–269.
  5. Jeśmanowicz, L. (1955/56). Several remarks on Pythagorean numbers. Wiadom. Mat., 1 (2), 196–202 (in Polish).
  6. Laurent, M. (2008). Linear forms in two logarithms and interpolation determinants II. Acta Arith., 133 (4), 325–348.
  7. Laurent, M., Mignotte, M. & Nesterenko, Y. (1995). Formes linéaires en deux logarithmes et déterminants dínterpolation. J. Number Theory, 55 (2), 285–321.
  8. Le, M. (2003). A conjecture concerning the exponential Diophantine equation ax + by = cz. Acta Arith., 106 (4), 345–353.
  9. Le, M., Togbe, A. & Zhu, H. (2014). On a pure ternary exponential Diophantine equation. Publ. Math. Debrecen, 85 (3–4), 395–411.
  10. Lu, W. (1959). On the Pythagorean numbers 4n2 – 1, 4n and 4n2 + 1. Acta Sci. Natur. Univ. Szechuan, 2, 39–42 (in Chinese).
  11. Luca, F. (2012). On the system of Diophantine equations a2 + b2 = (m2 + 1)r and ax + by = (m2 + 1)z. Acta Arith., 153 (4), 373–392.
  12. Miyazaki, T. (2011). Terai’s conjecture on exponential Diophantine equations. Int. J. Number Theory, 7 (4), 981–999.
  13. Miyazaki, T. (2014). A note on the article by F. Luca “On the system of Diophantine equations a2 + b2 = (m2 + 1)r and ax + by = (m2 + 1)z” (Acta Arith. 153 (2012), 373–392). Acta Arith., 164 (1), 31–42.
  14. Scott, R. & Styer, R. (2016). Number of solutions to ax + by = cz. Publ. Math. Debrecen, 88 (1–2), 131–138.
  15. Terai, N. (1994). The Diophantine equation ax + by = cz. Proc. Japan Acad. Ser. A Math. Sci., 70 (1), 22–26.
  16. Terai, N. (1995). The Diophantine equation ax + by = cz II. Proc. Japan Acad. Ser. A Math. Sci., 71 (6), 109–110.
  17. Terai, N. (1996). The Diophantine equation ax + by = cz III. Proc. Japan Acad. Ser. A Math. Sci., 72 (1), 20–22.
  18. Terai, N. (1999). Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations. Acta Arith., 90 (1), 17–35.

Related papers

Cite this paper

Miyazaki, T. (2019). On Terai’s exponential equation with two finite integer parameters. Notes on Number Theory and Discrete Mathematics, 25(1), 84-107, DOI: 10.7546/nntdm.2019.25.1.84-107.

Comments are closed.