Fouad Bounebirat, Diffalah Laissaoui and Mourad Rahmani
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 24, 2018, Number 4, Pages 92–98
DOI: 10.7546/nntdm.2018.24.4.92-98
Full paper (PDF, 191 Kb)
Details
Authors and affiliations
Fouad Bounebirat
USTHB, Faculty of Mathematics
P. O. Box 32, El Alia 16111, Bab-Ezzouar, Algiers, Algeria
Diffalah Laissaoui
Dr Yahia Fares University of Medea
M´ed´ea 26000, Algeria
Mourad Rahmani
USTHB, Faculty of Mathematics
P. O. Box 32, El Alia 16111, Bab-Ezzouar, Algiers, Algeria
Abstract
The aim of this paper is to present some results on the use of the generalized Stirling transform. First, we establish a generalization of a recent Guo–Qi’s identity for Bell numbers. Finally, a new explicit formula for Euler numbers are given.
Keywords
- Bell numbers
- Lah numbers
- Stirling transform
2010 Mathematics Subject Classification
- 11B73
- 33C05
References
- Broder, A. Z. (1984). The r-Stirling numbers, Discrete Math., 49, 241–259.
- Comtet, L. (1974). Advanced Combinatorics. Reidel Publishing Co., Dordrecht.
- Graham, R. L., Knuth, D. E., & Patashnik, O. (1994) Concrete Mathematics. Addison-Wesley Publishing Company, Reading, MA.
- Guo, B., & Qi, F. (2014). An explicit formula for Bell numbers in terms of Stirling numbers and hypergeometric functions, Glob. J. Math. Anal., 2, 243–248.
- Qi, F. (2016). An explicit formula for the Bell numbers in terms of the Lah and Stirling numbers, Mediterr. J. Math. 13, 2795–2800.
- Rahmani, M. (2014). Generalized Stirling transform, Miskolc Math. Notes, 15, 677–690.
- Wei, C.-F. & Qi, F. (2015). Several closed expressions for the Euler numbers. J. Inequal. Appl., 219, 8 pp.
Related papers
Cite this paper
Bounebirat, F., Laissaoui, D., & Rahmani, M. (2018). Some combinatorial identities via Stirling transform. Notes on Number Theory and Discrete Mathematics, 24(4), 92-98, DOI: 10.7546/nntdm.2018.24.4.92-98.