Aldous Cesar F. Bueno
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 22, 2016, Number 4, Pages 56–61
Full paper (PDF, 161 Kb)
Details
Authors and affiliations
Aldous Cesar F. Bueno
Philippine Science High School, Central Luzon Campus
Lily Hill, Clark Freeport Zone, Pampanga, Philippines
Abstract
We study two right circulant determinant sequences. The first sequence makes use of Jacobsthal numbers of the form Js+t while the other makes use of Jacobsthal–Lucas numbers of the form Ks+t, where s, t ∈ ℤ and s ≠ t. We also give some open problems.
Keywords
- Determinants sequence
- Jacobsthal numbers
- Jacobsthal–Lucas numbers
AMS Classification
- 15B05
References
- Bahsi, M. & Solak, S.(2010) On the Circulant Matrices with Arithmetic Sequence, International Journal of Contemporary Matematical. Sciences, 5(25), 1213–1222.
- Bozkurt, D. (2012) On the Determinants and Inverses of Circulant Matrices with a General Number Sequence, arXiv: 1202.1068v1 [math.NA] 6 Feb 2012.
- Bozkurt, D. (2012) On the Determinants and Inverses of Circulant Matrices with Jacobsthal and Lucas–Jacobsthal Numbers, arXiv: 1201.6058v1 [math.NA] 29 Jan 2012.
- Bozkurt, D. (2012) On the Determinants and Inverses of Circulant Matrices with Pell and Pell–Lucas Numbers, arXiv: 1201.6061v1 [math.NA] 29 Jan 2012.
- Bueno, A.C.F. (2012) On Right Circulant Matrices with Geometric Progression, International Journal of Applied Mathematical Research, 1(4), 593–603.
- Bueno, A.C.F. (2012) Right Circulant Matrices with Fibonacci Sequence, International Journal of Mathematics and Scientific Computing, 2(2), 9–10.
- Bueno, A.C.F. (2013) Right Circulant Matrices with Jacobsthal Sequence, International Journal of Advanced Mathematical Sciences, 1(2), 87–90.
- Bueno, A.C.F. (2013) Generalized Right Circulant Matrices with Geometric Sequence, International Journal of Mathematics and Scientific Computing, 3(1), 17–18
- Bueno, A.C.F. (2014) On the Eigenvalues and the Determinant of the Right Circulant Matrices with Pell and Pell–Lucas Numbers, International Journal of Mathematics and Scientific Computing, 4(1), 19–20.
- Bueno, A.C.F. (2014) Right Circulant Matrices with Sum of the Terms of Two Geometric Sequences, International Journal of Mathematics and Scientific Computing, 4(2), 51–52.
- Civciv, H. & Turkmen, R. Notes on Norms of Circulant Matrices with Lucas Numbers, International Journal of Information and System Sciences, 4(1), 142–147.
- Gray, R. Toeplitz and Circulant Matrices: A Review, http://ee.stanford.edu/˜gray/toeplitz.pdf
- Majumdar, A.A.K. Wandering in the World of Smarandache Numbers, http://fs.gallup.unm.edu/Majumdar.pdf
- Nalli, A. & Sen, M. (2010) On the Norms of Circulant Matrices with Generalized Fibonacci Numbers, Selcuk Journal of Applied Mathematics, 11(1), 107–116.
- Shen, S. & Cen, J. (2011) On the Norms of Circulant Matrices with the (k; h)-Fibonacci and (k; h)-Lucas Numbers, International Journal of Contemporary Mathematics and Sciences, 6(19), 887–894.
- Yalciner, A. (2008) Spectral Norms of Some Special Circulant Matrices, International Journal of Contemporary Mathematics and Sciences, 3(35), 1733–1738.
Related papers
Cite this paper
Bueno, A. C. F. (2016). Right circulant determinant sequences with Jacobsthal and Jacobsthal–Lucas Numbers. Notes on Number Theory and Discrete Mathematics, 22(4), 56-61.