Pavel Rucki
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 32, 2026, Number 1, Pages 5–14
DOI: 10.7546/nntdm.2026.32.1.5-14
Full paper (PDF, 213 Kb)
Details
Authors and affiliations
Pavel Rucki
![]()
Department of Mathematical Methods in Economics, Faculty of Economics, VŠB – Technical University Ostrava
17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
Abstract
The aim of this paper is to introduce new criteria for real infinite series that satisfy a specific property and yield an irrational sum. These criteria are based on an extension of previous ideas proposed by Erdős. The paper includes several illustrative examples.
Keywords
- Irrationality, Transcendence
- Liouville number
- Infinite series
2020 Mathematics Subject Classification
- 11J72
- 11J82
References
- Badea, C. (1987). The Irrationality of certain infinite series. Glasgow Mathematical Journal, 29, 221–228.
- Erdős, P. (1950). Problem 4321. The American Mathematical Monthly, 57(5), 347.
- Hančl, J., & Kolouch, O. (2011). Erdős method for determining the irrationality of products. Bulletin of the Australian Mathematical Society, 84(3), 414–424.
- Hančl, J., & Kolouch, O. (2013). Irrationality of infinite products. Publicationes Mathematicae Debrecen, 83(4), 667-–681.
- Hančl, J., & Luca, F. (2019). Irrationality of infinite series. Mediterranean Journal of Mathematics, 16, Article ID 89.
- Hančl, J., & Nair, R. (2017). On the irrationality of infinite series of reciprocals of square roots. Rocky Mountain Journal of Mathematics, 47(5), 1525–1538.
- Hancl, J., & Rucki, P. (2003). The irrationality of certain infinite series. Saitama Mathematical Journal, 21, 1–8.
- Hančl, J., & Rucki, P. (2005). The transcendence of certain infinite series. Rocky Mountain Journal of Mathematics, 35(2), 531–537.
- Hančl, J., & Rucki, P. (2006). Certain Liouville series. Annali Dell’Universita’ di Ferrara, 52, 45–51.
- Hančl, J., & Rucki, P. (2006). A generalization of Sándor’s theorem. Commentarii Mathematici Universitatis Sancti Pauli, 55, 97–111.
- Hančl, J., Rucki, P., & Sustek, J. (2006). A generalization of Sándor’s theorem using iterated logarithms. Kumamoto Journal of Mathematics, 19, 25–36.
- Laohakosol, V., & Kuhapatanakul, K. (2009). Irrationality criteria for infinite products. Journal of Combinatorics and Number Theory, 1(1), 49–57.
- Nyblom, M. A. (2000). A theorem on transcendence of infinite series. Rocky Mountain Journal of Mathematics, 30(3), 1111–1120.
- Nyblom, M. A. (2001). A theorem on transcendence of infinite series II. Journal of Number Theory, 91(1), 71–80.
- Roth, K. F. (1955). Rational approximations to algebraic numbers. Mathematica, 2(1), 1–20.
- Sándor, J. (1984). Some classes of irrational numbers. Studia Universitatis Babes-Bolyai Matematica, XXIX, 3–12.
- Sghiouer, F., Belhroukia, K., & Kacha, A. (2023). Transcendence of some infinite series. Le Mathematiche, LXXVIII(I), 201–211.
Manuscript history
- Received: 1 October 2025
- Revised: 15 December 2026
- Accepted: 6 February 2026
- Online First: 12 February 2026
Copyright information
Ⓒ 2026 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
Cite this paper
Rucki, P. (2026). Note on the irrationality of certain infinite series. Notes on Number Theory and Discrete Mathematics, 32(1), 5-14, DOI: 10.7546/nntdm.2026.32.1.5-14.
