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1 Introduction

Infinite series are a powerful tool in the analysis of irrational numbers. In this paper, we focus on
those numbers that can be expressed as the sum of infinite series consisting of positive rationals
and including a special subseries which converges very rapidly. The basis for the results could be
considered the following theorem which was proven by Erdős in 1950.

Theorem 1.1 (Erdős, [2]). Let (an) be a strictly increasing sequence of positive integers such that

lim
n→∞

an+1

a1a2 · · · an
= ∞. (1)

Then the sum of the series
∑∞

n=1 1/an is an irrational number.
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There have been many generalisations and modifications of this theorem. In 1984, Sándor
in [16] investigated the existence of a certain subsequence (an) which diverges very fast to +∞.
Moreover, he stipulated an additional condition for a sequence (an) to increase at a rate comparable
to a geometric sequence.

Theorem 1.2 (Sándor, [16]). Let {an}∞n=1 and {bn}∞n=1 be two sequences of positive integers such
that

lim sup
n→∞

an+1

a1a2 · · · an
· 1

bn+1

= ∞

and
lim inf
n→∞

an+1

an
· bn
bn+1

> 1.

Then the sum of the series
∞∑
n=1

bn
an

is an irrational number.

This result is closely related in nature to our Theorem 3.1, which involves similar lim sup and
lim inf assumptions and deals with a broader class of infinite series. These results were followed
up by Badea in 1987, who derived other interesting results concerning the irrationality of infinite
series, see [1]. Several generalizations of Sándor’s theorem have been proposed subsequently,
including those by Hančl and Rucki [10], and Hančl, Rucki, and Šustek [11], which extend
Sándor’s criterion. Furthermore, Sándor’s approach also inspired results on irrationality criteria
for infinite products, see the work of Laohakosol and Kuhapatanakul [12].

Hančl and Rucki [8, 9] also proposed sufficient conditions under which the sum of an infinite
series is a transcendental or Liouville number. These conditions are predicated on certain results
from the theory of Diophantine approximations, particularly Roth’s theorem, which will be utilised
later in this paper.

Theorem 1.3 (Roth, [15]). Let ξ be an algebraic number of degree n ≥ 2. Then the inequality∣∣∣∣ξ − p

q

∣∣∣∣ < 1

q2+δ

has only finitely many solutions in coprime integers p, q with q ̸= 0 for each δ > 0.

For additional results concerning the transcendence of rapidly converging series, see the papers
of Nyblom [13, 14]. There have been some intriguing results in recent times. In 2017, Hančl
and Nair demonstrated in [6] that if (an) is a non-decreasing sequence of positive integers such
that limn→∞ log2 an/2

n2
= ∞, then the sum of the series

∑∞
n=1 1/

√
an is an irrational number.

In 2019, Hančl and Luca proved in [5] that if (an) is a non-decreasing sequence of positive integers
such that limn→∞ a

1/3n

n = ∞, then the sum of the series
∑∞

n=1 1/
(√

2 + an
)

is an irrational
number. In 2023, Sghiouer, Belhroukia, and Kacha established new results in [17] concerning
a transcendental measure of the series

∑∞
n=1 1/

√
an. Furthermore, the concept of proving the

irrationality of rapidly converging series can also be extended to infinite products, see [3, 4].
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The results of this paper are not as stringent as Theorem 1.1. We will consider infinite series
that can converge significantly slower, such as p-series and nested logarithm series.

In other words, Theorem 3.1 and 3.2 introduce new criteria for determining the irrationality
and transcendence of the sum of an infinite series. These criteria extend the results previously
discussed in [7–9]. Additionally, the theorems and corollaries include specific examples of infinite
series.

2 Notation and preliminaries

We will manipulate with the nested logarithmic function intensively. Therefore, we define it as
follows

logk x :=

x for k = 0,

log logk−1 x for k > 1,

provided that x is a sufficiently large real number. Since we will consider only the logarithm
(to base e), there can be no ambiguity with k. It will always determine the number of nested
logarithms.

To make further math expressions more transparent, we define an operator Bk as

Bk xn := (xn − 1) logk n, k ∈ N0, n ≥ n0, (2)

where (xn) is a real sequence.
At the end of this section, let us remind the concept of the irrationality measure µ(ξ) of a real

number ξ. It is the supremum of m ∈ R+ such that the relation∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qm

is fulfilled for infintely many rationals p/q in lowest terms.

3 Main results

In the next theorem, we introduce two sufficient conditions under which the sum of the series is an
irrational number.

Theorem 3.1. Let (an), (bn) be two sequences of positive integers and k ∈ N0 such that

lim sup
n→∞

(
an+1

bn+1

∏k
i=0 logi n

· 1

a1a2 · · · an

)
= ∞ (3)

and

lim inf
n→∞

Bk Bk−1 · · ·B1 B0

(
2− bn+1

an+1

· an
bn

)
> 1. (4)

Then the sum ξ of the series
∞∑
n=1

bn
an

is an irrational number.
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Example 3.1. Let a1 = 1. Suppose for every positive integer n that

an+1 =

n2 · a1a2 · · · an, if n = 1010
m!
, m ∈ N,

an + ⌊H2
n + 2Hn⌋, otherwise,

where Hn is the n-th harmonic number. Then ξ =
∑∞

n=1 1/an is an irrational number.

Let us put k = 1 in Theorem 3.1. The recurrence relation ∆an = H2
n + 2Hn is satisfied by a

sequence (an) that can be expressed in the form

an = a
1010m! + n log2 n+O(n log n), 1010

m!

+ 1 < n ≤ 1010
(m+1)!

.

It implies immediately that the lower limit (4) equals 2, so all the conditions of Theorem 3.1 are
fulfiled and ξ is an irrational number.

In the following part, we will present some resultshlconcerning the irrationality measure of
real numbers in a special form.

The next theorem gives a lower bound on the irrationality measure of the sum of an infinite
series consisting of positive rationals. It contains two necessary conditions with a similar meaning
as in Theorem 3.1.

Theorem 3.2. Let (an), (bn) be two sequences of positive integers, δ ≥ 2 and k ∈ N0. Suppose
that

lim sup
n→∞

[
log

(
an+1

bn+1

)
· 1

log(a1a2 . . . an)

]
= δ (5)

and

lim inf
n→∞

Bk Bk−1 . . .B1 B0

(
2− bn+1

an+1

· an
bn

)
> 1. (6)

Then the sum ξ of the series

ξ =
∞∑
n=1

bn
an

has the irrationality measure µ(ξ) ≥ δ.

The following corollaries are derived from Theorem 3.2 by setting k = 0 and δ > 2,
respectively, δ = ∞.

Corollary 3.1. Let (an) and (bn) be two sequences of positive integers. Suppose that

lim sup
n→∞

[
log

(
an+1

bn+1

)
· 1

log(a1a2 . . . an)

]
> 2

and

lim inf
n→∞

n

(
1− bn+1

an+1

· an
bn

)
> 1. (7)

Then the sum ξ of the series
∞∑
n=1

bn
an

is a transcendental number.
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The fact that the sum is a transcendental number follows immediately from Roth’s Theorem
(Theorem 1.3).

The following corollary presents sufficient conditions for an infinite series whose sum is a
Liouville number. Recall that Liouville numbers are real numbers with an infinite irrationality
measure.

Corollary 3.2. Let (an) and (bn) be two sequences of positive integers. Suppose that

lim sup
n→∞

[
log

(
an+1

bn+1

)
· 1

log(a1a2 · · · an)

]
= ∞

and

lim inf
n→∞

n

(
1− bn+1

an+1

· an
bn

)
> 1.

Then the sum ξ of the series
∞∑
n=1

bn
an

is a Liouville number.

Example 3.2. Let a1 = b1 = 1. Suppose for every positive integer n that

an+1 =

(a1a2 · · · an)εn , if n = (m!)m!, m ∈ N,

(2n+ 1)an, otherwise,

bn+1 = (2n− 2)bn,

For a constant sequence εn = 4, n ∈ N, we get that

ξ =
∞∑
n=1

bn
an

is a transcendental number. On the other hand, if we take εn = pn as the n-th prime, then the sum
ξ is a Liouville number.

It easy to verify that bn/an = O(n−3/2) as n → ∞ and hence the lower limit (7) in
Corollary 3.1 is at least 3/2.

4 Auxiliary statements

The purpose of the auxiliary Lemma 4.1 is to find an appropriate estimate for tails of infinite
series which are under our observation. We achieve this using a generalization of Bertrand’s
convergence test. By combining this approach with specific results from the theory of Diophantine
approximation, we establish Theorem 3.1 which provides sufficient conditions for an infinite series
to have an irrational sum. Additionally, we introduce Theorem 3.2 and its corollary which deal
with the irrationality measure of the sum of a particular type of infinite series and offer a lower
bound for this measure.
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Lemma 4.1. Let (xn) be a sequence of positive real numbers such that xn → 0 as n → ∞ and

lim inf
n→∞

Bk Bk−1 · · ·B1 B0

(
2− xn+1

xn

)
> 1, k ∈ N0. (8)

Then there exists a real number A > 1, a positive integer n0 and a sequence (cn) of real numbers
approaching 1 with cn > 1 such that

∞∑
m=n+1

xm <
cn

A− 1
· xn+1 ·

k∏
j=0

logj n, ∀n > n0. (9)

Proof. Inequality (8) ensures the existence of a real constant A > 1 and a number n0 ∈ N such
that

Bk Bk−1 · · ·B1 B0

(
2− xn+1

xn

)
> A, ∀n > n0.

Using this relation and (2) (k + 1)-times, we can express the ratio xn+1/xn in the following way

Bk−1 Bk−2 · · ·B1 B0

(
2− xn+1

xn

)
>

A

logk n
+ 1

Bk−2 · · ·B1 B0

(
2− xn+1

xn

)
>

A

logk−1 n · logk n
+

1

logk−1 n
+ 1

...

xn+1

xn

< 1− A∏k
i=0 logi n

−
k−1∑
j=0

1∏j
i=0 logi n

with n > n0. In general, for every s = 1, 2, . . . we can estimate the term xn+s using xn and a
certain function of n from above

xn+s = xn

s−1∏
m=0

xn+m+1

xn+m

< xn

s−1∏
m=0

(
1− A∏k

i=0 logi(n+m)
−

k−1∑
j=0

1∏j
i=0 logi(n+m)

)
.

Now we simplify the product on the right-hand side by applying the relation log(1− t) ≤ −t with
t < 1 and the elementary integral identity∫

dt∏k
i=0 logi t

= logk+1 t+ c, k ≥ 0, c ∈ R.
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Hence

xn+1+s < xn+1 exp

(
s−1∑
m=0

log

(
1− A∏k

i=0 logi(n+ 1 +m)
−

k−1∑
j=0

1∏j
i=0 logi(n+ 1 +m)

))

≤ xn+1 exp

(
−

s−1∑
m=0

(
A∏k

i=0 logi(n+ 1 +m)
+

k−1∑
j=0

1∏j
i=0 logi(n+ 1 +m)

))

< xn+1 exp

(
−
∫ n+1+s

n+1

(
A∏k

i=0 logi t
+

k−1∑
j=0

1∏j
i=0 logi t

)
dt

)

= xn+1 exp

(
log

(
logk(n+ 1)

logk(n+ 1 + s)

)A

+
k−1∑
j=0

log

(
logj(n+ 1)

logj(n+ 1 + s)

))

= xn+1

(
logk(n+ 1)

logk(n+ s+ 1)

)A

·
k−1∏
j=0

(
logj(n+ 1)

logj(n+ s+ 1)

)
.

Shifting the parameter s+ 1 to s, we get

xn+s ≤ xn+1

(
logk(n+ 1)

logk(n+ s)

)A

·
k−1∏
j=0

(
logj(n+ 1)

logj(n+ s)

)
, n > n0, s ∈ N. (10)

We have estimated all the terms of the sequence (xn) with large enough indices using xn and xn+1,
respectively, with a fixed index n so far.

In the following part, we construct an estimate of the tail of the series that consists of these
terms. From (10) and from the obvious formula∫

dt

logαk t
∏k−1

i=0 logi t
= − 1

α− 1
· 1

logα−1
k t

+ c, α ̸= 1, k ≥ 0, c ∈ R,

we deduce that

∞∑
s=1

xn+s ≤ xn+1

∞∑
s=1

(
logk(n+ 1)

logk(n+ s)

)A

·
k−1∏
j=0

(
logj(n+ 1)

logj(n+ s)

)

= xn+1 · logAk (n+ 1) ·
k−1∏
j=0

logj(n+ 1) ·
∞∑
s=1

1

logAk (n+ s) ·
∏k−1

j=0 logj(n+ s)

≤ xn+1 · logAk (n+ 1) ·
k−1∏
j=0

logj(n+ 1) ·
∫ ∞

n

dt

logAk t ·
∏k−1

j=0 logj t

= xn+1 ·
1

A− 1
· log

A
k (n+ 1)

logA−1
k n

·
k−1∏
j=0

logj(n+ 1), n > n0. (11)

Now using the limit

lim
n→∞

logAk (n+ 1)

logAk n
·
k−1∏
j=0

logj(n+ 1)

logj n
= 1,
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we can infer that there exists a sequence (cn) with cn > 1 approaching 1 so that

logAk (n+ 1) ·
k−1∏
j=0

logj(n+ 1) ≤ cn · logAk n ·
k−1∏
j=0

logj n.

Finally, this fact and (11) yield the assertion of the lemma, thus

∞∑
m=n+1

xm ≤ cn
A− 1

· xn+1 ·
k∏

j=0

logj n.

5 Proofs

Proof of Theorem 3.1. For contradiction suppose that ξ =
∑∞

n=1 bn/an is a rational number in its
simplest form p/q. Multiplying both sides of the following relation

p

q
=

n∑
m=1

bm
am

+
∞∑

m=n+1

bm
am

by qa1a2 · · · an, we get the positive integer on the right-hand side and, consequently,

qa1a2 · · · an
∞∑

m=n+1

bm
am

= pa1a2 · · · an − qa1a2 · · · an
n∑

m=1

bm
am

.

This implies immediately that the expression on the left-hand side containing the tail of the
series must be a positive integer, as well. Since the sequence (bn/an) fulfils all the conditions of
Lemma 4.1, we use it to estimate the tail of the given series. In other words, there exist a real
number A > 1, a positive integer n0 and a sequence (cn) with cn > 1 approaching 1, such that

1 ≤ qa1a2 . . . an

∞∑
m=n+1

bm
am

<
qcn

A− 1
· a1a2 · · · an ·

bn+1

an+1

·
k∏

j=0

logj n, ∀n > n0. (12)

Assumption (3) implies that for every real M > 0 there exist infinitely many n’s such that

an+1

bn+1

∏k
i=0 logi n

· 1

a1a2 · · · an
> M. (13)

Let us consider such indices n ≥ n0 for which relation (13) holds true. Taking a real constant
M > qcn/(A− 1) and using (12) and (13), we deduce that

1 ≤ qa1a2 · · · an
∞∑

m=n+1

bm
am

<
qcn

A− 1
· 1

M
< 1.

However, it is a contradiction. Hence ξ is an irrational number and the proof is complete. □

Proof of Theorem 3.2. Similarly to the proof of Theorem 3.1, Lemma 4.1 ensures the existence of a
real number A > 1, a positive integer n0 and a sequence (cn) with cn > 1 approaching 1 such that

∞∑
m=n+1

bm
am

<
cn

A− 1
· bn+1

an+1

·
k∏

j=0

logj n, ∀n > n0. (14)
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Considering assumption (5) in more detail, we deduce that for every real ε > 0 there exist infinitely
many positive integers n > n0 such that

log

(
an+1

bn+1

)
· 1

log(a1a2 · · · an)
> δ − ε ⇒ bn+1

an+1

<
1

(a1a2 · · · an)δ−ε
. (15)

As (an) is a sequence diverging to +∞, we can find a positive integer n1 such that an ≥ 2 for
every n > n1 and

(a1a2 · · · aN)ε ≥ 2ε(N−n1) ≥ cN
A− 1

·
k∏

j=0

logj N (16)

for every N > n1 simultaneously. Let n2 = max(n0, n1). From (14), (15) and (16) we infer for
infinitely many N > n2 that

∞∑
m=N+1

bm
am

≤ 1

(a1a2 · · · aN)δ−2ε
. (17)

Let us consider a sequence of rational approximations pN/qN generated from the N -th
partial sums of ξ =

∑∞
n=1 bn/an and expressed in reduced form. Using the obvious relation

qN ≤ lcm(a1a2 · · · aN) ≤ a1a2 · · · aN and inequality (17), we deduce that∣∣∣∣ξ − pN
qN

∣∣∣∣ =
∣∣∣∣∣ξ −

N∑
m=1

bm
am

∣∣∣∣∣ < 1

(a1a2 · · · aN)δ−2ε
≤ 1

qδ−2ε
N

for infinitely many positive integers N . This and the fact that ε was chosen arbitrarily yield the
estimate of the irrationality measure of ξ, thus µ(ξ) ≥ δ. □

6 Conclusion

In this paper we have introduced new sufficient conditions for determining the irrationality and
transcendence of sums of infinite series of rational terms. By extending the approach initiated by
Erdős and subsequently developed by Sándor, Badea, Hančl, Rucki, and others, we established
criteria that apply to a wider class of slowly converging series, including p-series and nested
logarithmic series.

Theorem 3.1 provides explicit conditions under which the sum of a series must be irrational,
while Theorem 3.2 gives lower bounds on the irrationality measure of such sums. From these
results we derived corollaries identifying series with transcendental sums as well as series yielding
Liouville numbers.

The relation between convergence rate and Diophantine properties of infinite series presents
many open questions for future investigation of sums of infinite series and of analogous problems
concerning infinite products.
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