Jun Ikeda, Junsei Kochiya and Takato Ui
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 4, Pages 90–94
DOI: 10.7546/nntdm.2021.27.4.90-94
Full paper (PDF, 142 Kb)
Details
Authors and affiliations
Jun Ikeda ![]()
Kaijo School, Shinjuku, Tokyo, Japan
Junsei Kochiya ![]()
Kaijo School, Shinjuku, Tokyo, Japan
Takato Ui ![]()
Kaijo School, Shinjuku, Tokyo, Japan
Abstract
Linas Vepštas gives rapidly converging infinite representatives for values of Riemann zeta function at
, where
is a natural number. In this paper, we give a new simple proof. Also, we obtain two equation of values of Bernoulli numbers’ generating function by applying a corollary given in this paper.
Keywords
- Analysis
- Riemann zeta function
- Fourier series
- Hyperbolic function
2020 Mathematics Subject Classification
- 11M06
References
- Glaisher, J. W. L. (1875). On a Class of Identical Relations in the Theory of Elliptic Functions. Philosophical Transactions of the Royal Society of London, 165, 489–518. Available online: http://www.jstor.org/stable/109157
- Vepštas, L. (2012). On Plouffe’s Ramanujan identities. The Ramanujan Journal, 27(4), 387–408.
- Volkovyskii, L. I., Lunts, G. L., & Aramanovich, I. G. (1965). A Collection of Problems on Complex Analysis, Dover Publications, Inc., New York.
Related papers
Cite this paper
Ikeda, J., Kochiya, J., & Ui, T. (2021). A simple proof of Linas’s theorem on Riemann zeta function. Notes on Number Theory and Discrete Mathematics, 27(4), 90-94, DOI: 10.7546/nntdm.2021.27.4.90-94.
