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Abstract: Linas Vepštas gives rapidly converging infinite representatives for values of Riemann
zeta function at (4m− 1), wherem is a natural number. In this paper, we give a new simple proof.
Also, we obtain two equation of values of Bernoulli numbers’ generating function by applying a
corollary given in this paper.
Keywords: Analysis, Riemann zeta function, Fourier series, Hyperbolic function.
2020 Mathematics Subject Classification: 11M06.

1 Introduction

Linas Vepštas [2] gave the following rapidly converging infinite representations for values of
ζ(4m− 1) using polylogarithm, where m is a natural number and Bk is the k’th Bernoulli
number.

Theorem 1.1 (Linas’s theorem).

ζ(4m− 1) = −2
∞∑
n=1

1

n4m−1 (e2πn − 1)
− 1

2
(2π)4m−1

2m∑
j=0

(−1)j
B2j

(2j)!

B4m−2j

(4m− 2j)!
.

In this paper, we give a simple proof of it, using Fourier series of cosh (x).
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2 Preliminaries

Lemma 2.1 (cf. [1, p. 506]).

L coth (L) = 1 + 2
∞∑
n=1

1(
π
L
n
)2

+ 1
.

Proof. Using the Fourier series expansion method from −L to L, where L is a positive real
number, cosh (x) is expressed as following

cosh (x) =
sinh (L)

L
+
∞∑
n=1

2

L

(−1)n(
π
L
n
)2

+ 1
sinh (L) cos

(π
L
nx
)
.

Substituting L for x, we obtained the following equation.

cosh (L) =
sinh (L)

L
+

2

L
sinh (L)

∞∑
n=1

(−1)n(
π
L
n
)2

+ 1
(−1)n .

Corollary 2.1.1.
∞∑
k=1

coth (πk)

k4m−1
=

1

π

∞∑
k=1

1

k4m
+

2

π

∞∑
k=1

∞∑
n=1

1

k4m−2n2 + k4m
.

Lemma 2.2.
∞∑
k=1

∞∑
n=1

1

k4m + k4m−2n2
.

This series converges, where m is a positive integer.

Proof. From Corollary 2.1.1, the series above can be rewritten as follows,
∞∑
k=1

∞∑
n=1

1

k4m + k4m−2n2
=

1

2

∞∑
k=1

(
− 1

k4m
+
π coth(kπ)

k4m−1

)
.

Since the right-hand side expression above is always positive and monotonically decreases, Cauchy
Condensation Test can be applied. Therefore, below is the necessary and sufficient condition for
it to converge.

∞∑
k=0

2k

(
− 1

(2k)4m
+
π coth

(
2kπ
)

(2k)4m−1

)
.

This series can be divided as follows,

(−1 + π cothπ) +
∞∑
k=1

2k

(
− 1

(2k)4m
+
π coth

(
2kπ
)

(2k)4m−1

)
.

The expressions in the first parentheses are constants and by applying the ratio test, we can see
that the part of the infinite series converges if the following conditions are satisfied.

lim
k→∞

∣∣∣∣∣∣∣∣∣∣
2k+1

(
− 1

(2k+1)4m
+
π coth

(
2k+1π

)
(2k+1)4m−1

)

2k

(
− 1

(2k)4m
+
π coth

(
2kπ
)

(2k)4m−1

)
∣∣∣∣∣∣∣∣∣∣
< 1.
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The value of the left-hand side expression is 41−2m, which is less than 1. Thus, the series
converges.

Lemma 2.3.
∞∑
k=1

∞∑
n=1

1

k4m + k4m−2n2
=

1

2

∞∑
k=1

∞∑
n=1

2m−1∑
s=1

(−1)s+1

k4m−2sn2s
.

Proof.
2m−1∑
s=1

(−1)s+1

k4m−2sn2s
=

2m−1∑
s=1

1

k4m

(
(−1)s+1 k

2s

n2s

)
.

It is well-known that for an integer p, the following equation is valid

αp − βp

α− β
= αp−1 + αp−2β + αp−3β2 + · · ·+ βp−1

=

p∑
s=1

αp−sβs−1

=
αp

β

p∑
s=1

(
β

α

)s
.

One can divide both sides by 1/αpβp to get

1

α− β

[
1

βp
− 1

αp

]
=

1

βp+1

p∑
s=1

(
β

α

)s
.

Now, let α = n2 and β = −k2 and p = 2m− 1. This gives the equation below

1

k4m + k4m−2n2
+

1

k2n4m−2 + n4m
=

2m−1∑
s=1

(−1)s+1

k4m−2sn2s
.

From the result of Lemma 2.2, we can say that the infinite sum of the left-hand side and each term
of the left-hand side converge, so we obtain the following equality.

∞∑
k=1

∞∑
n=1

1

k4m−2n2 + k4m
+
∞∑
k=1

∞∑
n=1

1

n4m + k2n4m−2 =
∞∑
k=1

∞∑
n=1

2m−1∑
s=1

(−1)s+1

k4m−2sn2s
.

Since these dual series are positive term series and converge, we can rewrite them as follows.

∞∑
k=1

∞∑
n=1

2

k4m−2n2 + k4m
=
∞∑
k=1

∞∑
n=1

2m−1∑
s=1

(−1)s+1

k4m−2sn2s
.

3 Proof of the main theorem

The following relation is well-known.

ζ(2n) = (−1)n+1 B2n (2π)
2n

2 (2n)!
.
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We can rewrite Theorem 1.1 with this equation as follows.

ζ(4m− 1) + 2
∞∑
k=1

1

k4m−1 (e2πk − 1)
=

1

π

2m∑
s=0

(−1)s+1 ζ(4m− 2s)ζ(2s).

The equation above can be proved by transforming the equation from Corollary 2.1 using
Lemma 2.3 by the following process.

∞∑
k=1

coth (πk)

k4m−1
=

1

π

∞∑
k=1

1

k4m
+

2

π

∞∑
k=1

∞∑
n=1

1

k4m−2n2 + k4m

=
1

π

(
∞∑
k=1

1

k4m
+
∞∑
k=1

∞∑
n=1

2m−1∑
s=1

(−1)s+1

k4m−2sn2s

)

=
1

π

(
ζ(4m) +

2m−1∑
s=1

(−1)s+1 ζ(4m− 2s)ζ(2s)

)

=
1

π

2m∑
s=0

(−1)s+1 ζ(4m− 2s)ζ(2s).

4 Appendix

This appendix gives the following equations.

1

e2 − 1
=
∞∑
n=1

1

(nπ)2 + 1
, (A1)

π

eπ − 1
= 2

∞∑
n=1

(
1

4n2 + 1
+

(−1)n

4n2 − 1

)
. (A2)

These equations result from the following corollary.

Corollary 4.0.1 (cf. [3, Exercise 1001, p. 149]).

x

ex − 1
= −x

2
+ 1 + 2

∞∑
n=1

1

4
(π
x
n
)2

+ 1
.

Substituting 2, π for x in Corollary 4.0.1, we get the following equations, respectively:

1

e2 − 1
=
∞∑
n=1

1

(nπ)2 + 1
, (*)

π

eπ − 1
= −π

2
+ 1 + 2

∞∑
n=1

1

4n2 + 1
. (**)
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The following equality can be obtained by computation in this manner:

2
∞∑
n=1

(−1)n+1

4n2 − 1
= 2 lim

k→∞

k∑
n=1

(−1)n+1

4n2 − 1

= 2 lim
k→∞

k∑
n=1

(
1

2n− 1
− 1

2n+ 1

)
· (−1)n+1

2

= lim
k→∞

((
1

1
− 1

3

)
−
(
1

3
− 1

5

)
+

(
1

5
− 1

7

)
− · · · ±

(
1

2k − 1
− 1

2k + 1

))
= lim

k→∞

(
2 ·
(
1

1
− 1

3
+

1

5
− 1

7
· · · ± 1

2k − 1

)
− 1∓ 1

2k + 1

)
=

π

2
− 1,

which after substitution in (**) establishes equation (A2).
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