József Sándor
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 3, Pages 29–38
DOI: 10.7546/nntdm.2021.27.3.29-38
Full paper (PDF, 218 Kb)
Details
Authors and affiliations
József Sándor
Department of Mathematics, Babeş-Bolyai University
Cluj-Napoca, Romania
Abstract
We study certain properties of Vandiver’s arithmetic function .
Keywords
- Arithmetic function
- Inequalities
- Generalized perfect numbers
2020 Mathematics Subject Classification
- 11A25
- 11A41
- 11N37
- 26D15
References
- Beckenbach, E. F., & Bellman, R. (1961). Inequalities, Springer-Verlag.
- Lehmer, D. H. (1974). Harry Schultz Vandiver. Bulletin of the American
Mathematical Society, 80, 817–818. - Sándor, J. (2001). On multiplicatively perfect numbers. Journal of Inequalities in Pure and Applied Mathematics, 2(1), Article No. 3, 6 pages.
- Sándor, J., Mitrinovic, D. S., & Crstici, B. (2006). Handbook of Number Theory. Vol. 1. Springer.
- Sándor, J., & Toth, L.(2008).On multiplicatively σ-perfect numbers. Octogon Mathematical Magazine, 16(2), 906–908.
- Vandiver, H. S. (1904). Problem 116. American Mathematical Monthly, 11, 38–39.
Related papers
- Sándor, J. (2022). On Vandiver’s arithmetical function – II. Notes on Number Theory and Discrete Mathematics, 28(4), 710-718.
Cite this paper
Sándor, J. (2021). Inequalities for generalized divisor functions. Notes on Number Theory and Discrete Mathematics, 27(3), 29-38, DOI: 10.7546/nntdm.2021.27.3.29-38.