V. Siva Rama Prasad and P. Anantha Reddy
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 3, Pages 16-28
DOI: 10.7546/nntdm.2021.27.3.16-28
Full paper (PDF, 244 Kb)
Details
Authors and affiliations
V. Siva Rama Prasad
Professor (Retired), Department of Mathematics, Osmania University
Hyderabad, Telangana-500007, India
P. Anantha Reddy
Government Polytechnic
Kanteshwar, Nizamabad, Telangana-503002, India
Abstract
Let denote the set of all positive integers and for , let denote their greatest common divisor. For any , we define to be the sum of those , where . An asymptotic formula for the summatory function of is obtained in this paper which is applicable to a variety of sets . Also the formula given by Bordellès for the summatory function of can be derived from our result. Further, depending on the structure of , the asymptotic formulae obtained from our theorem give better error terms than those deducible from a theorem of Bordellès (see Remark 4.4).
Keywords
- Pillai function
- gcd-sum function
- Asymptotic formula
- Möbius function of S
- Dirichlet product
- r-free integer
- Semi-r-free integer
- (k, r)-integer
- Unitary divisor
2020 Mathematics Subject Classification
- Primary: 11A25
- Secondary: 11N37
References
- Apostol, T. M. (1998). Introduction to Analytic Number Theory, Springer International Student Edition, Narosa Publishing House, New Delhi.
- Bordellès, O. (2007). A note on the average order of the gcd-sum function. Journal of Integer Sequences, 10, Article 07.3.3.
- Bordellès, O. (2010). The composition of the gcd and certain arithmetic functions. Journal of Integer Sequences, 13, Article 10.7.1.
- Bourgain, J., & Watt, N. (2017). Mean Square of zeta function, circle problem and divisor problem revisited. Preprint. Available online at: arXiv:1709.04340v1 [math.AP].
- Broughan, K. A. (2001). The gcd-sum function. Journal of Integer Sequences, 4, Article 01.2.2.
- Cohen, E. (1959). Arithmetical functions associated with arbitrary sets of integers. Acta Arithmetica, 5, 407–415.
- Cohen, E. (1961). Some sets of integers related to the k-free integers. Acta Scientiarum Mathematicarum (Szeged), 22, 223–233.
- Hardy, G. H. (1916). The average order of the arithmetical functions P(x) and ∆(x). Proceedings of the London Mathematical Society, 15(2), 192–213.
- Pillai, S. S. (1933). On an arithmetic function. Journal of the Annamalai University, 2, 243–248.
- Rieger, G. J. (1973). Einige Verteilungsfragen mit k-leeran Zahlen, r-Zahlen und Primzahlen. Journal für die reine und angewandte Mathematik, 262/263, 189–193.
- Subbarao, M. V., & Suryanarayana, D. (1974). On the order of the error function of the (k, r)-integers. Journal of Number Theory, 6(2), 112–123.
- Suryanarayana, D., & Sitaramachandra Rao, R. (1973). Distribution of semi-k-free integers, Proceedings of the American Mathematical Society, 37(2), 340–346.
- Suryanarayana, D., & Siva Rama Prasad, V. (1971). The number of k-free divisors of an integer. Acta Arithmetica, XVII, 345–354.
- Tóth, L. (2010). A survey of gcd-sum functions. Journal of Integer Sequences, 13, Article 10.8.1.
- Tóth, L. (2011). Weighted gcd-sum function. Journal of Integer Sequences, 14, Article 11.7.7.
- Walfisz, A. (1963). Weylsche Exponentialsummen in der neueren Zahlentheorie. Leipzig B. G. Teubner.
Related papers
Cite this paper
Siva Rama Prasad, V., & Anantha Reddy, P. (2021). On the average order of the gcd-sum function over arbitrary sets of integers. Notes on Number Theory and Discrete Mathematics, 27(3), 16-28, DOI: 10.7546/nntdm.2021.27.3.16-28.