On the connections among Fibonacci, Pell, Jacobsthal and Padovan numbers

Ömür Deveci
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 2, Pages 111–128
DOI: 10.7546/nntdm.2021.27.2.111-128
Full paper (PDF, 248 Kb)

Details

Authors and affiliations

Ömür Deveci
Department of Mathematics, Faculty of Science and Letters,
Kafkas University, 36100, Turkey

Abstract

In this paper, we define the Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–Jacobsthal, Padovan–Pell and Padovan–Jacobsthal sequences which are directly related with the Fibonacci, Jacobsthal, Pell and Padovan numbers and give their structural properties by matrix methods. Then we obtain new relationships between Fibonacci, Jacobsthal, Pell and Padovan numbers.

Keywords

  • Fibonacci sequence
  • Jacobsthal sequence
  • Pell sequence
  • Padovan sequence
  • Matrix
  • Representation

2020 Mathematics Subject Classification

  • 11K31
  • 11C20
  • 15A15

References

  1. Bradie, B. (2010). Extension and refinements of some properties of sums involving Pell number. Missouri Journal of Mathematical Sciences, 22(1), 37–43.
  2. Brualdi, R. A., & Gibson, P. M. (1977). Convex polyhedra of doubly stochastic matrices. I. Applications of permanent function. Journal of Combinatorial Theory, Series A, 22(2), 194–230.
  3. Chen, W. Y. C., & Louck, J. D. (1996). The combinatorial power of the companion matrix. Linear Algebra and its Applications, 232, 261–278.
  4. Devaney, R. L. (1999). The Mandelbrot set, the Farey tree, and the Fibonacci sequence. American Mathematical Monthly, 106(4), 289–302.
  5. Deveci, Ö. (2018). The Padovan-circulant sequences and their applications. Mathematical Reports, 20(70), 401–416.
  6. Deveci, Ö., & Artun, G. (2019). On the adjacency-Jacobsthal numbers. Communications in Algebra, 47(11), 4520–4532.
  7. Deveci, Ö., & Karaduman, E. (2017). On the Padovan p-numbers. Hacettepe Journal of Mathematics and Statistics, 46(4), 579–592.
  8. Frey, D. D., & Sellers, J. A. (2000) Jacobsthal numbers and alternating sign matrices. Journal of Integer Sequences, 3, Article 00.2.3.
  9. Gogin, N. D., & Myllari, A. A. (2007). The Fibonacci–Padovan sequence and MacWilliams transform matrices. Programming and Computer Software, 33(2), 74–79.
  10. Horadam, A. F. (1996). Jacobsthal representations numbers, The Fibonacci Quarterly, 34(1), 40–54.
  11. Horadam, A. F. (1994). Applications of modified Pell numbers to representations. Ulam Quarterly, 3(1), 34–53.
  12. Johnson, R. C. (2009). Fibonacci Numbers and Matrices. Available online at: https://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf.
  13. Kalman, D. (1982). Generalized Fibonacci numbers by matrix methods. The Fibonacci Quarterly, 20(1), 73–76.
  14. Kilic, E. (2009). The generalized Pell (p, i)-numbers and their Binet formulas, combinatorial representations, sums. Chaos, Solitons & Fractals, 40(4), 2047–2063.
  15. Kilic, E., & Tasci, D. (2006). The generalized Binet formula, representation and sums of the generalized order-k Pell numbers. Taiwanese Journal of Mathematics, 10(6), 1661–1670.
  16. Kocer, E. G., & Tuglu N. (2007). The Binet formulas for the Pell and Pell–Lucas p-numbers. Ars Combinatoria, 85, 3–17.
  17. Koken, F., & Bozkurt, D. (2008). On the Jacobsthal numbers by matrix methods.
    International Journal of Contemporary Mathematical Sciences, 3(13), 605–614.
  18. Lancaster, P. & Tismenetsky, M. (1985) The Theory of Matrices: With Applications, Elsevier.
  19. Lidl, R., & Niederreiter, H. (1994). Introduction to Finite Fields and Their Applications, Cambridge University Press.
  20. McDaniel,W. L. (1996). Triangular numbers in the Pell sequence. The Fibonacci Quarterly, 34(2), 105–107.
  21. Shannon, A. G., Anderson, P. G., & Horadam, A. F. (2006). Properties of Cordonnier, Perrin and Van der Laan numbers. International Journal of Mathematical Education in Science and Technology, 37(7), 825–831.
  22. Shannon, A. G., Horadam, A. F., & Anderson, P. G. (2006). The auxiliary equation associated with the plastic number. Notes on Number Theory and Discrete Mathematics, 12(1), 1–12.
  23. Stakhov, A. P., & Rozin, B. (2006). Theory of Binet formulas for Fibonacci and Lucas p-numbers. Chaos, Solitions & Fractals, 27(5), 1162–1177.
  24. Stewart, I. (1996). Tales of a neglected number. Scientific American, 274(6), 102–103.
  25. Tasci, D., & Firengiz, M. C. (2010). Incomplete Fibonacci and Lucas p-numbers. Mathematical and Computer Modelling, 52(9–10), 1763–1770.

Related papers

Cite this paper

Deveci, Ö. (2021). On the connections among Fibonacci, Pell, Jacobsthal and Padovan numbers. Notes on Number Theory and Discrete Mathematics, 27(2), 111-128, DOI: 10.7546/nntdm.2021.27.2.111-128.

Comments are closed.