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1 Introduction

The well-known Fibonacci, Jacobsthal, Pell and Padovan sequences are defined by the following
recurrence relations, respectively:

Fn = Fn−1 + Fn−2 for n ≥ 2 in which F0 = 0 and F1 = 1,

Jn = Jn−1 + 2Jn−2 for n ≥ 2 in which J0 = 0 and J1 = 1,

Pn = 2Pn−1 + Pn−2 for n ≥ 2 in which P0 = 0 and P1 = 1,

and
Pan = Pan−2 + Pan−3 for n ≥ 3 in which Pa0 = Pa1 = Pa2 = 1.

It is easy to see that the characteristic polynomials of the Fibonacci, Jacobsthal, Pell and
Padovan sequences are f1 (x) = x2 − x − 1, f2 (x) = x2 − x − 2, f3 (x) = x2 − 2x − 1 and
f4 (x) = x3 − x− 1, respectively. We use these in the next section.
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Let the (n+ k)-th term of a sequence be defined recursively by a linear combination of the
preceding k terms:

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1,

where c0, c1, . . . , ck−1 are real constants. In [13], Kalman derived a number of closed-form
formulas for the generalized sequence by the companion matrix method as follows:

Let A be a matrix of order k as follows:

A = [ai,j]k×k =



0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 1

c0 c1 c2 · · · ck−2 ck−1


,

then

An


a0
a1
...

ak−1

 =


an
an+1

...
an+k−1


for n > 0.

Number theoretic properties such as these obtained from homogeneous linear recurrence
relations relevant to this paper have been studied recently by many authors: see, for example, [1,4,
8–12,20–22,24]. In [5–7,14–17,23,25], the authors defined some linear recurrence sequences and
gave their various properties by matrix methods. In this paper, we discuss connections between
the Fibonacci, Jacobsthal, Pell, and Padovan numbers.

Firstly, we define the Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–
Jacobsthal, Padovan–Pell, and Padovan–Jacobsthal sequences and then we give recurrence
relations among these sequences and the Fibonacci, Jacobsthal, Pell, and Padovan sequences.
Also, we give the relations between the generating matrices of sequences defined and the elements
of Fibonacci, Jacobsthal, Pell, and Padovan sequences.

Furthermore, using the generating matrices and the generating functions of sequences defined,
we obtain their structural properties such as the Binet formulas, the exponential and combinatorial
representations which are intimately connected with the Fibonacci, Jacobsthal, Pell, and Padovan
numbers. Finally, we derive the permanental, determinantal representations and the sums of the
Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–Jacobsthal, Padovan–Pell, and
Padovan–Jacobsthal numbers by the certain matrices.

2 Main results

Define the Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–Jacobsthal, Padovan–
Pell, and Padovan–Jacobsthal sequences as follows, respectively:
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F−J (n+ 4) = 2F−J (n+ 3) + 2F−J (n+ 2)− 3F−J (n+ 1)− 2F−J (n) (1)

for n ≥ 0 in which F−J (0) = F−J (1) = F−J (2) = 0 and F−J (3) = 1,

Pa−F (n+ 5) = Pa−F (n+ 4) + 2Pa−F (n+ 3)− 2Pa−F (n+ 1)− Pa−F (n) (2)

for n ≥ 0 in which Pa−F (0) = Pa−F (1) = Pa−F (2) = Pa−F (3) = 0 and Pa−F (4) = 1,

P−F (n+ 4) = 3P−F (n+ 3)− 3P−F (n+ 1)− P−F (n) (3)

for n ≥ 0 in which P−F (0) = P−F (1) = P−F (2) = 0 and P−F (3) = 1,

P−J (n+ 4) = 3P−J (n+ 3) + P−J (n+ 2)− 5P−J (n+ 1)− 2P−J (n) (4)

for n ≥ 0 in which P−J (0) = P−J (1) = P−J (2) = 0 and P−J (3) = 1,

Pa−P (n+ 5) = 2Pa−P (n+ 4) + 2Pa−P (n+ 3)− Pa−P (n+ 2)− 3Pa−P (n+ 1)− Pa−P (n) , (5)

for n ≥ 0 in which Pa−P (0) = Pa−P (1) = Pa−P (2) = Pa−P (3) = 0 and Pa−P (4) = 1,
and

Pa−J (n+ 5) = Pa−J (n+ 4) + 3Pa−J (n+ 3)− 3Pa−J (n+ 1)− 2Pa−J (n) , (6)

for n ≥ 0 in which Pa−J (0) = Pa−J (1) = Pa−J (2) = Pa−J (3) = 0 and Pa−J (4) = 1.
First we consider relationships between the above sequences and the Fibonacci, Jacobsthal,

Pell, and Padovan sequences.

Theorem 2.1. Let F−J (n), Pa−F (n), P−F (n), P−J (n), Pa−P (n) and Pa−J (n) be the
nth Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–Jacobsthal, Padovan–Pell,
and Padovan–Jacobsthal numbers, respectively, then

F − J (n) = Jn − Fn for n ≥ 0,

Pa− F (n+ 2) = Fn+1 − Pan for n ≥ 0,

P − F (n+ 1) = Pn − Fn for n ≥ 0,

P − J (n) =
n−1∑
i=0

(Pi − Ji) for n ≥ 1,

4Pa− P (n+ 5) + Pa− P (n+ 4) = Pn+4 − Pan+3 − Pan for n ≥ 0, and

2Pa− J (n+ 2) + Pa− J (n+ 1) = Jn+1 − Pan for n ≥ 0.

Proof. Let us consider the first equation. We will use the induction method on n. It is clear that
F − J (0) = J0 − F0 = 0. Now we assume that the equation holds for n ≥ 0. Then we show
that the equation holds for n+1. Since the characteristic polynomial of the Fibonacci–Jacobsthal
sequence is p (x) = x4 − 2x3 − 2x2 + 3x + 2 and p (x) = f1 (x) f2 (x) where f1 (x) and f2 (x)
are characteristic polynomials of the Fibonacci and Jacobsthal sequence, respectively, we obtain
the following relations:

Fn+4 = 2Fn+3 + 2Fn+2 − 3Fn+1 − 2Fn,

Jn+4 = 2Jn+3 + 2Jn+2 − 3Jn+1 − 2Jn.

for n ≥ 0. Thus, by a simple calculation, we have the conclusion.
The proofs of other equations are similar to the above and are omitted.
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2.1 Companion matrices

By the recurrence relations (1)–(6), we can write the following companion matrices, respectively:

M1 =


2 2 −3 −2
1 0 0 0

0 1 0 0

0 0 1 0

 ,

M2 =


1 2 0 −2 −1
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 ,

M3 =


3 0 −3 −1
1 0 0 0

0 1 0 0

0 0 1 0

 ,

M4 =


3 1 −5 −2
1 0 0 0

0 1 0 0

0 0 1 0

 ,

M5 =


2 2 −1 −3 −1
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 ,

and

M6 =


1 3 0 −3 −2
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 .

The matricesM1,M2,M3,M4,M5 andM6 are said to be the Fibonacci–Jacobsthal, Padovan–
Fibonacci, Pell–Fibonacci, Pell–Jacobsthal, Padovan–Pell, and Padovan–Jacobsthal, respectively.
Let F −J (n), Pa−F (n), P −F (n), P −J (n), Pa−P (n) and Pa−J (n) be denoted by x1n,
x2n, x3n, x4n, x5n and x6n, respectively. Since F0, J0, P0 and Pa0 are initial values of the sequences
{Fn}, {Jn}, {Pn} and {Pan}, respectively, we consider the multiplicative order of the generating
matrices for suitable values of n. By mathematical induction on n, we derive:
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(M1)
n =


x1n+3 Fn+1 + (−1)n+1 Fn+3 − x1n+4 Fn − x1n+3 + (−1)n

x1n+2 Fn + (−1)n Fn+2 − x1n+3 Fn−1 − x1n+2 + (−1)n+2

x1n+1 Fn−1 + (−1)n+1 Fn+1 − x1n+2 Fn−2 − x1n+1 + (−1)n

x1n Fn−2 + (−1)n Fn − x1n+1 Fn−3 − x1n + (−1)n+1

 for n ≥ 3,

(M2)
n =


x2n+4 Pan−1 + x2n+3 Pan − x2n+4 Pan+1 − x2n+5 −x2n+3

x2n+3 Pan−2 + x2n+2 Pan−1 − x2n+3 Pan − x2n+4 −x2n+2

x2n+2 Pan−3 + x2n+1 Pan−2 − x2n+2 Pan−1 − x2n+3 −x2n+1

x2n+1 Pan−4 + x2n Pan−3 − x2n+1 Pan−2 − x2n+2 −x2n
x2n Pan−5 + x2n−1 Pan−4 − x2n Pan−3 − x2n+1 −x2n−1

 for n ≥ 5,

(M3)
n =


x3n+3 Fn+2 + x3n+2 − x3n+3 Fn+3 + x3n+3 − x3n+4 −x3n+2

x3n+2 Fn+1 + x3n+1 − x3n+2 Fn+2 + x3n+2 − x3n+3 −x3n+1

x3n+1 Fn + x3n − x3n+1 Fn+1 + x3n+1 − x3n+2 −x3n
x3n Fn−1 + x3n−1 − x3n Fn + x3n − x3n+1 −x3n−1

 for n ≥ 1,

(M4)
n =


x4n+3 Jn+2 + x4n+2 − x4n+3 Jn+3 − x4n+4 −2x4n+2

x4n+2 Jn+1 + x4n+1 − x4n+2 Jn+2 − x4n+3 −2x4n+1

x4n+1 Jn + x4n − x4n+1 Jn+1 − x4n+2 −2x4n
x4n Jn−1 + x4n−1 − x4n Jn − x4n+1 −2x4n−1

 for n ≥ 1,

(M5)
n =


x5n+4 Pan−1 + x5n+3 Pan − x5n+4 Pan−2 − x5n+4 − x5n+3 −x5n+3

x5n+3 Pan−2 + x5n+2 Pan−1 − x5n+3 Pan−3 − x5n+3 − x5n+2 −x5n+2

x5n+2 Pan−3 + x5n+1 Pan−2 − x5n+2 Pan−4 − x5n+2 − x5n+1 −x5n+1

x5n+1 Pan−4 + x5n Pan−3 − x5n+1 Pan−5 − x5n+1 − x5n −x5n
x5n Pan−5 + x5n−1 Pan−4 − x5n Pan−6 − x5n − x5n−1 −x5n−1

 for n ≥ 6

and

(M6)
n =


x6n+4 x6n+5 − x6n+4 Pan − x6n+4 Pan+1 − x6n+5 −2x6n+3

x6n+3 x6n+4 − x6n+3 Pan−1 − x6n+3 Pan − x6n+4 −2x6n+2

x6n+2 x6n+3 − x6n+2 Pan−2 − x6n+2 Pan−1 − x6n+3 −2x6n+1

x6n+1 x6n+2 − x6n+1 Pan−3 − x6n+1 Pan−2 − x6n+2 −2x6n
x6n x6n+1 − x6n Pan−4 − x6n Pan−3 − x6n+1 −2x6n−1

 for n ≥ 4.

2.2 Binet formulas

Now we concentrate on finding the Binet formulas for the Fibonacci–Jacobsthal, Padovan–
Fibonacci, Pell–Fibonacci, Pell–Jacobsthal, Padovan–Pell, and Padovan–Jacobsthal numbers.
It is clear that each of the eigenvalues of the matrices M1, M2, M3, M4, M5 and M6 are distinct,
respectively. Let

{
λ
(1)
1 , λ

(1)
2 , λ

(1)
3 , λ

(1)
4

}
,
{
λ
(2)
1 , λ

(2)
2 , λ

(2)
3 , λ

(2)
4 , λ

(2)
5

}
,
{
λ
(3)
1 , λ

(3)
2 , λ

(3)
3 , λ

(3)
4

}
,
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{
λ
(4)
1 , λ

(4)
2 , λ

(4)
3 , λ

(4)
4

}
,
{
λ
(5)
1 , λ

(5)
2 , λ

(5)
3 , λ

(5)
4 , λ

(5)
5

}
and

{
λ
(6)
1 , λ

(6)
2 , λ

(6)
3 , λ

(6)
4 , λ

(6)
5

}
be the sets of

the eigenvalues of the matrices M1, M2, M3, M4, M5 and M6, respectively, and let V (u)
k be a

k × k Vandermonde matrix (where k = 4 for u = 1, 3, 4; and k = 5 for u = 2, 5, 6) as follows:

V
(u)
k =



(
λ
(u)
1

)k−1 (
λ
(u)
2

)k−1
· · ·

(
λ
(u)
k

)k−1(
λ
(u)
1

)k−2 (
λ
(u)
2

)k−2
· · ·

(
λ
(u)
k

)k−2
...

... . . . ...
1 1 · · · 1


.

Assume that

W
(u,i)
k =



(
λ
(u)
1

)n+k−i(
λ
(u)
2

)n+k−i

...(
λ
(u)
k

)n+k−i


and V (u,i,j)

k is a k × k matrix obtained from V
(u)
k by replacing the j-th column of V (u)

k by W (u,i)
k .

Theorem 2.2. Let (Mu)
n = m

(u,n)
i,j , then

m
(u,n)
i,j =

detV
(u,i,j)
k

detV
(u)
k

,

where k = 4 for u = 1 and n ≥ 3; k = 4 for u = 2 and n ≥ 5; k = 4 for u = 3, 4 and n ≥ 1;
k = 5 for u = 5 and n ≥ 6; and k = 5 for u = 6 and n ≥ 4.

Proof. Let us consider the matrix M2. Since the eigenvalues of the matrix M2 are distinct,
M2 is diagonalizable. Let D2 = diag

(
λ
(2)
1 , λ

(2)
2 , λ

(2)
3 , λ

(2)
4 , λ

(2)
5

)
, then it is readily seen that

M2V
(2)
5 = V

(2)
5 D2. Since the matrix V (2)

5 is invertible,
(
V

(2)
5

)−1
M2V

(2)
5 = D2. Therefore, M2

is similar to D2; hence, (M2)
n
(
V

(2)
5

)n
=
(
V

(2)
5

)n
(D2)

n for n ≥ 5. So we have the following
linear system of equations:

m
(2,n)
i,1

(
λ
(2)
1

)4
+m

(2,n)
i,2

(
λ
(2)
1

)3
+m

(2,n)
i,3

(
λ
(2)
1

)2
+m

(2,n)
i,4

(
λ
(2)
1

)
+m

(2,n)
i,5 =

(
λ
(2)
1

)n+5−i

m
(2,n)
i,1

(
λ
(2)
2

)4
+m

(2,n)
i,2

(
λ
(2)
2

)3
+m

(2,n)
i,3

(
λ
(2)
2

)2
+m

(2,n)
i,4

(
λ
(2)
2

)
+m

(2,n)
i,5 =

(
λ
(2)
2

)n+5−i

m
(2,n)
i,1

(
λ
(2)
3

)4
+m

(2,n)
i,2

(
λ
(2)
3

)3
+m

(2,n)
i,3

(
λ
(2)
3

)2
+m

(2,n)
i,4

(
λ
(2)
3

)
+m

(2,n)
i,5 =

(
λ
(2)
3

)n+5−i

m
(2,n)
i,1

(
λ
(2)
4

)4
+m

(2,n)
i,2

(
λ
(2)
4

)3
+m

(2,n)
i,3

(
λ
(2)
4

)2
+m

(2,n)
i,4

(
λ
(2)
4

)
+m

(2,n)
i,5 =

(
λ
(2)
4

)n+5−i

m
(2,n)
i,1

(
λ
(2)
5

)4
+m

(2,n)
i,2

(
λ
(2)
5

)3
+m

(2,n)
i,3

(
λ
(2)
5

)2
+m

(2,n)
i,4

(
λ
(2)
5

)
+m

(2,n)
i,5 =

(
λ
(2)
5

)n+5−i

.

Then, for i, j = 1, 2, 3, 4, 5, we obtain

m
(2,n)
i,j =

detV
(2,i,j)
5

detV
(2)
5

.

The proofs for other matrices are similar to the above and are omitted.
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Corollary 2.1. Let F−J (n), Pa−F (n), P−F (n), P−J (n), Pa−P (n) and Pa−J (n) be the
nth Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–Jacobsthal, Padovan–Pell,
and Padovan–Jacobsthal numbers, respectively, then:

F − J (n) =
detV

(1,4,1)
4

detV
(1)
4

for n ≥ 3,

Pa− F (n) =
detV

(2,5,1)
5

detV
(2)
5

= −detV
(2,4,5)
5

detV
(2)
5

for n ≥ 5,

P − F (n) =
detV

(3,4,1)
4

detV
(3)
4

= −detV
(3,3,4)
4

detV
(3)
4

for n ≥ 1,

P − J (n) =
detV

(4,4,1)
4

detV
(4)
4

= −detV
(4,3,4)
4

2 · detV (4)
4

for n ≥ 1,

Pa− P (n) =
detV

(5,5,1)
5

detV
(5)
5

= −detV
(5,4,5)
5

detV
(5)
5

for n ≥ 6

and

Pa− J (n) =
detV

(6,5,1)
5

detV
(6)
5

= −detV
(6,4,5)
5

2 · detV (6)
5

for n ≥ 4.

2.3 Generating functions

It is easy to see that the generating functions of the sequences {F − J (n)}, {Pa− F (n)},
{P − F (n)}, {P − J (n)}, {Pa− P (n)} and {Pa− J (n)} are, respectively,

g1 (x) =
x3

1− 2x− 2x2 + 3x3 + 2x4
,

(
0 ≤ 2x+ 2x2 − 3x3 − 2x4 < 1

)
,

g2 (x) =
x4

1− x− 2x2 + 2x4 + x5
,

(
0 ≤ x+ 2x2 − 2x4 − x5 < 1

)
,

g3 (x) =
x3

1− 3x+ 3x3 + x4
,

(
0 ≤ 3x− 3x3 − x4 < 1

)
,

g4 (x) =
x3

1− 3x− x2 + 5x3 + 2x4
,

(
0 ≤ 3x+ x2 − 5x3 − 2x4 < 1

)
,

g5 (x) =
x4

1− 2x− 2x2 + x3 + 3x4 + x5
,
(
0 ≤ 2x+ 2x2 − x3 − 3x4 − x5 < 1

)
and

g6 (x) =
x4

1− x− 3x2 + 3x4 + 2x5
,

(
0 ≤ x+ 3x2 − 3x4 − 2x5 < 1

)
.

117



2.4 Exponential representations

Now considering the functions g1 (x), g2 (x), g3 (x), g4 (x), g5 (x) and g6 (x), we can give the
exponential representations for the Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci,
Pell–Jacobsthal, Padovan–Pell, and Padovan–Jacobsthal numbers by the following Theorem.

Theorem 2.3. The sequences {F−J (n)}, {Pa−F (n)}, {P−F (n)}, {P−J (n)}, {Pa−P (n)}
and {Pa−J (n)} have the following exponential representations, respectively:

g1 (x) = x3 exp

(
∞∑
i=1

xi

i

(
2 + 2x− 3x2 − 2x3

)i)
,

g2 (x) = x4 exp

(
∞∑
i=1

xi

i

(
1 + 2x− 2x3 − x4

)i) ,

g3 (x) = x3 exp

(
∞∑
i=1

xi

i

(
3− 3x2 − x3

)i)
,

g4 (x) = x3 exp

(
∞∑
i=1

xi

i

(
3 + x− 5x2 − 2x3

)i) ,

g5 (x) = x4 exp

(
∞∑
i=1

xi

i

(
2 + 2x− x2 − 3x3 − x4

)i)
and

g6 (x) = x4 exp

(
∞∑
i=1

xi

i

(
1 + 3x− 3x3 − 2x4

)i) .

Proof. Consider the sequence {P − F (n)}. Since ln g3(x)
x3 = − ln (1− 3x+ 3x3 + x4) and

ln
(
1− 3x+ 3x3 + x4

)
= −

[
x
(
3− 3x2 − x3

)
+

1

2
x2
(
3− 3x2 − x3

)2
+ · · ·+ 1

i
xi
(
3− 3x2 − x3

)i] ,

by a simple calculation, we obtain the conclusion.
There are similar proofs for other sequences.

2.5 Combinatorial representations

Here we investigate the combinatorial representations for the Fibonacci–Jacobsthal, Padovan–
Fibonacci, Pell–Fibonacci, Pell–Jacobsthal, Padovan–Pell, and Padovan–Jacobsthal numbers.

Let K (k1, k2, . . . , kv) be a v × v companion matrix as follows:

K (k1, k2, . . . , kv) =


k1 k2 · · · kv
1 0 · · · 0
... . . . . . . ...
0 · · · 1 0


.

For more details on the companion type matrices, see [18, 19].

118



Theorem 2.4. (Chen and Louck [3]). The (i, j) entry k
(n)
i,j (k1, k2, . . . , kv) in the matrix

Kn (k1, k2, . . . , kv) is given by the following formula:

k
(n)
i,j (k1, k2, . . . , kv) =

∑
(t1,t2,...,tv)

tj + tj+1 + · · ·+ tv
t1 + t2 + · · ·+ tv

×
(
t1 + · · ·+ tv
t1, . . . , tv

)
kt11 · · · ktvv , (7)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + vtv = n − i + j,(
t1+···+tv
t1,...,tv

)
= (t1+···+tv)!

t1!···tv ! is a multinomial coefficient, and the coefficients in (7) are defined to be 1

if n = i− j.

Then we have the following Corollary.

Corollary 2.2. (i) F − J (n) =
∑

(t1,t2,t3,t4)

(
t1 + t2 + t3 + t4
t1, t2, t3, t4

)
2t1+t2 (−3)t3 (−2)t4 , (n ≥ 3)

where the summation is over nonnegative integers satisfying t1 + 2t2 + 3t3 + 4t4 = n− 3.

(ii) Pa− F (n) =
∑

(t1,t2,t3,t4,t5)

(
t1 + t2 + t3 + t4 + t5

t1, t2, t3, t4, t5

)
2t2 (−2)t4 (−1)t5 , (n ≥ 5)

where the summation is over nonnegative integers satisfying t1+2t2+3t3+4t4+5t5 = n−4
and

Pa−F (n) = −

 ∑
(t1,t2,t3,t4,t5)

t5
t1 + t2 + t3 + t4 + t5

×
(
t1 + t2 + t3 + t4 + t5

t1, t2, t3, t4, t5

)
2t2 (−2)t4 (−1)t5

, (n ≥ 5)

where the summation is over nonnegative integers satisfying t1+2t2+3t3+4t4+5t5 = n+1.

(iii) P − F (n) =
∑

(t1,t2,t3,t4)

(
t1 + t2 + t3 + t4
t1, t2, t3, t4

)
3t1 (−3)t3 (−1)t4 , (n ≥ 1)

where the summation is over nonnegative integers satisfying t1 + 2t2 + 3t3 + 4t4 = n− 3

and

P−F (n) = −

 ∑
(t1,t2,t3,t4)

t4
t1 + t2 + t3 + t4

(
t1 + t2 + t3 + t4
t1, t2, t3, t4

)
3t1 (−3)t3 (−1)t4

, (n ≥ 1)

where the summation is over nonnegative integers satisfying t1 + 2t2 + 3t3 + 4t4 = n+ 1.

(iv) P − J (n) =
∑

(t1,t2,t3,t4)

(
t1 + t2 + t3 + t4
t1, t2, t3, t4

)
3t1 (−5)t3 (−2)t4 , (n ≥ 1)

where the summation is over nonnegative integers satisfying t1 + 2t2 + 3t3 + 4t4 = n− 3

and

P − J (n) = −1

2

 ∑
(t1,t2,t3,t4)

t4
t1 + t2 + t3 + t4

(
t1 + t2 + t3 + t4

t1, t2, t3, t4

)
3t1 (−5)t3 (−2)t4

 , (n ≥ 1)

where the summation is over nonnegative integers satisfying t1 + 2t2 + 3t3 + 4t4 = n+ 1.
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(v) Pa− P (n) =
∑

(t1,t2,t3,t4,t5)

(
t1 + t2 + t3 + t4 + t5

t1, t2, t3, t4, t5

)
2t1+t2 (−1)t3+t5 (−3)t4 , (n ≥ 6)

where the summation is over nonnegative integers satisfying t1+2t2+3t3+4t4+5t5 = n−4
and

Pa−P (n)=−

 ∑
(t1,t2,t3,t4,t5)

t5
t1+t2+t3+t4+t5

×
(
t1+t2+t3+t4+t5
t1, t2, t3, t4, t5

)
2t1+t2 (−1)t3+t5 (−3)t4

, (n ≥ 6)

where the summation is over nonnegative integers satisfying t1+2t2+3t3+4t4+5t5 = n+1.

(vi) Pa−J (n) =
∑

(t1,t2,t3,t4,t5)

(
t1 + t2 + t3 + t4 + t5

t1, t2, t3, t4, t5

)
3t2 (−3)t4 (−2)t5 , (n ≥ 4)

where the summation is over nonnegative integers satisfying t1+2t2+3t3+4t4+5t5 = n−4
and

Pa−J(n)=−1

2

 ∑
(t1,t2,t3,t4,t5)

t5
t1 + t2 + t3 + t4 + t5

×
(
t1 + t2 + t3 + t4 + t5

t1, t2, t3, t4, t5

)
3t2 (−3)t4 (−2)t5

,(n≥4)

where the summation is over nonnegative integers satisfying t1+2t2+3t3+4t4+5t5 = n+1.

Proof. Consider the case (iv). If we take i = 4, j = 1 for first case and i = 3, j = 4 for second
case in Theorem 2.4, then we can directly see the conclusions from (M4)

n.
There are similar proofs for the sequences {F−J (n)}, {Pa−F (n)}, {P−F (n)}, {Pa−P (n)}

and {Pa−J (n)}.

2.6 Permanental representations

Now we concentrate on finding the permanental representations of defined these sequences.

Definition 2.1. A u× v real matrix M = [mi,j] is called a contractible matrix in the k-th column
(respectively, row) if the k-th column (respectively, row) contains exactly two non-zero entries.

Suppose that x1, x2, . . . , xu are row vectors of the matrix M. If M is contractible in the k-th
column such that mi,k 6= 0,mj,k 6= 0 and i 6= j, then the (u− 1)× (v − 1) matrix Mij:k obtained
fromM by replacing the i-th row withmi,kxj+mj,kxi and deleting the j-th row. The k-th column
is called the contraction in the k-th column relative to the i-th row and the j-th row.

In [2], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order
α > 1 and N is a contraction of M.

Now we consider the relationships among the Fibonacci–Jacobsthal, Padovan–Fibonacci,
Pell–Fibonacci, Pell–Jacobsthal, Padovan–Pell and, Padovan–Jacobsthal numbers and the
permanents of the certain matrices which are obtained by using the generating matrix of the
Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–Jacobsthal, Padovan–Pell, and
Padovan–Jacobsthal numbers. Let K(1) (m) =

[
k
(1)
i,j

]
, K(2) (m) =

[
k
(2)
i,j

]
, K(3) (m) =

[
k
(3)
i,j

]
,

K(4) (m) =
[
k
(4)
i,j

]
, K(5) (m) =

[
k
(5)
i,j

]
and K(6) (m) =

[
k
(6)
i,j

]
be the m × m super-diagonal

matrices as follows, respectively:
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k
(1)
i,j =



2
if i = t and j = t for 1 ≤ t ≤ m, and
i = t and j = t+ 1 for 1 ≤ t ≤ m− 1,

1 if i = t+ 1 and j = t for 1 ≤ t ≤ m− 1,

−2 if i = t and j = t+ 3 for 1 ≤ t ≤ m− 3,

−3 if i = t and j = t+ 2 for 1 ≤ t ≤ m− 2,

0 otherwise.

for m ≥ 4,

k
(2)
i,j =



2 if i = t and j = t+ 1 for 1 ≤ t ≤ m− 1,

1
if i = t and j = t for 1 ≤ t ≤ m, and
i = t+ 1 and j = t for 1 ≤ t ≤ m− 1,

−1 if i = t and j = t+ 4 for 1 ≤ t ≤ m− 4,

−2 if i = t and j = t+ 3 for 1 ≤ t ≤ m− 3,

0 otherwise.

for m ≥ 5,

k
(3)
i,j =



3 if i = t and j = t for 1 ≤ t ≤ m,

1 if i = t+ 1 and j = t for 1 ≤ t ≤ m− 1,

−1 if i = t and j = t+ 3 for 1 ≤ t ≤ m− 3,

−3 if i = t and j = t+ 2 for 1 ≤ t ≤ m− 2,

0 otherwise.

for m ≥ 4,

k
(4)
i,j =



3 if i = t and j = t for 1 ≤ t ≤ m,

1
if i = t and j = t+ 1 for 1 ≤ t ≤ m− 1, and
i = t+ 1 and j = t for 1 ≤ t ≤ m− 1,

−2 if i = t and j = t+ 3 for 1 ≤ t ≤ m− 3,

−5 if i = t and j = t+ 2 for 1 ≤ t ≤ m− 2,

0 otherwise.

for m ≥ 4,

k
(5)
i,j =



2
if i = t and j = t for 1 ≤ t ≤ m, and
i = t and j = t+ 1 for 1 ≤ t ≤ m− 1,

1 if i = t+ 1 and j = t for 1 ≤ t ≤ m− 1,

−1 if i = t and j = t+ 2 for 1 ≤ t ≤ m− 2, and
i = t and j = t+ 4 for 1 ≤ t ≤ m− 4,

−3 if i = t and j = t+ 3 for 1 ≤ t ≤ m− 3,

0 otherwise.

for m ≥ 5

k
(6)
i,j =



3 if i = t and j = t+ 1 for 1 ≤ t ≤ m− 1,

1
if i = t and j = t for 1 ≤ t ≤ m, and
i = t+ 1 and j = t for 1 ≤ t ≤ m− 1,

−2 if i = t and j = t+ 4 for 1 ≤ t ≤ m− 4,

−3 if i = t and j = t+ 3 for 1 ≤ t ≤ m− 3,

0 otherwise.

for m ≥ 5.
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Then we have the following Theorem.

Theorem 2.5. (i). For m > 4 and k = 1, 3, 4,

perK(k) (m) = xkm+3.

(ii). For m > 5 and k = 2, 5, 6,
perK(k) (m) = xkm+4.

Proof. Consider the subcase of k = 3 in case (i). Let us consider matrix K(3) (m) and let the
equation be holds for m > 4. Then we show that the equation holds for m+ 1. If we expand the
perK(3) (m) by the Laplace expansion of permanent with respect to the first row, then we obtain

perK(3) (m+ 1) = 3. perK(3) (m)− 3. perK(3) (m− 2)− perK(3) (m− 3) .

Since perK(3) (m) = x3m+3, perK(3) (m− 2) = x3m+1 and perK(3) (m− 3) = x3m, we easily
obtain perK(3) (m+ 1) = x3m+4. So the proof is complete.

There are similar proofs for other matrices.

Let L(1) (m) =
[
l
(1)
i,j

]
, L(2) (m) =

[
l
(2)
i,j

]
, L(3) (m) =

[
l
(3)
i,j

]
, L(4) (m) =

[
l
(4)
i,j

]
, L(5) (m) =[

l
(5)
i,j

]
and L(6) (m) =

[
l
(6)
i,j

]
be the m×m matrices as follows, respectively:

l
(1)
i,j =



2
if i = t and j = t for 1 ≤ t ≤ m− 2, and
i = t and j = t+ 1 for 1 ≤ t ≤ m− 2,

1
if i = t and j = t for m− 1 ≤ t ≤ m, and
i = t+ 1 and j = t for 1 ≤ t ≤ m− 3,

−2 if i = t and j = t+ 3 for 1 ≤ t ≤ m− 3,
−3 if i = t and j = t+ 2 for 1 ≤ t ≤ m− 3,
0 otherwise.

for m ≥ 4,

l
(2)
i,j =



2 if i = t and j = t+ 1 for 1 ≤ t ≤ m− 2,

1
if i = t and j = t for 1 ≤ t ≤ m, and
i = t+ 1 and j = t for 1 ≤ t ≤ m− 4,

−1 if i = t and j = t+ 4 for 1 ≤ t ≤ m− 4,

−2 if i = t and j = t+ 3 for 1 ≤ t ≤ m− 3,

0 otherwise.

for m ≥ 5,

l
(3)
i,j =



3 if i = t and j = t for 1 ≤ t ≤ m− 2,

1
if i = t and j = t for m− 1 ≤ t ≤ m, and
i = t+ 1 and j = t for 1 ≤ t ≤ m− 3,

−1 if i = t and j = t+ 3 for 1 ≤ t ≤ m− 3,

−3 if i = t and j = t+ 2 for 1 ≤ t ≤ m− 2,

0 otherwise.

for m ≥ 4,
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l
(4)
i,j =



3 if i = t and j = t for 1 ≤ t ≤ m− 2,

1

if i = t and j = t for m− 1 ≤ t ≤ m,
i = t and j = t+ 1 for 1 ≤ t ≤ m− 2, and
i = t+ 1 and j = t for 1 ≤ t ≤ m− 3,

−2 if i = t and j = t+ 3 for 1 ≤ t ≤ m− 3,

−5 if i = t and j = t+ 2 for 1 ≤ t ≤ m− 2,

0 otherwise.

for m ≥ 4,

l
(5)
i,j =



2
if i = t and j = t for 1 ≤ t ≤ m− 2, and
i = t and j = t+ 1 for 1 ≤ t ≤ m− 2,

1
if i = t and j = t for m− 1 ≤ t ≤ m, and
i = t+ 1 and j = t for 1 ≤ t ≤ m− 3,

−1 if i = t and j = t+ 2 for 1 ≤ t ≤ m− 3, and
i = t and j = t+ 4 for 1 ≤ t ≤ m− 4,

−3 if i = t and j = t+ 3 for 1 ≤ t ≤ m− 3,
0 otherwise.

for m ≥ 5,

l
(6)
i,j =



3 if i = t and j = t+ 1 for 1 ≤ t ≤ m− 2,

1
if i = t and j = t for 1 ≤ t ≤ m, and
i = t+ 1 and j = t for 1 ≤ t ≤ m− 4,

−2 if i = t and j = t+ 4 for 1 ≤ t ≤ m− 4,

−3 if i = t and j = t+ 3 for 1 ≤ t ≤ m− 3,

0 otherwise.

for m ≥ 5.

Then we have the following Theorem.

Theorem 2.6. (i). For m > 4 and k = 1, 3, 4,

perL(k) (m) = xkm+1.

(ii). For m > 5 and k = 2, 6,
perL(k) (m) = xkm+1.

(iii). For m > 5,
perL(5) (m) = x5m+2.

Proof. Consider the subcase of k = 6 in case (ii). Let us consider the matrix L(6) (m) and let
the equation holds for m ≥ 5. Then we show that the equation holds for m + 1. If we expand
perL(6) (m) by the Laplace expansion of permanent according to the first row, then we obtain:

perL(6) (m+ 1) = perL(6) (m) + 3 perL(6) (m− 1)− 3 perL(6) (m− 3)− 2 perL(6) (m− 4) .

Also, since perL(6) (m) = x6m+1, perL(6) (m− 1) = x6m, perL(6) (m− 3) = x6m−2 and

perL(6) (m− 4) = x6m−3, it is clear that perL(6) (m+ 1) = x6m+2.
There are similar proofs for other matrices.

123



Assume that N (1) (m) =
[
n
(1)
i,j

]
, N (2) (m) =

[
n
(2)
i,j

]
, N (3) (m) =

[
n
(3)
i,j

]
, N (4) (m) =

[
n
(4)
i,j

]
,

N (5) (m) =
[
n
(5)
i,j

]
and N (6) (m) =

[
n
(6)
i,j

]
are the m×m matrices as shown, respectively:

(m− 2) -th
↓

N (k) (m) =


1 · · · 1 0 0

1

0
... L(k) (m− 1)

0


, for m > 4 and k = 1, 4,

(m− 3) -th
↓

N (k) (m) =



1 · · · 1 0 0 0

1

0
... L(k) (m− 1)

0

0


, for m > 5 and k = 2, 6,

(m− 3) -th
↓

N (3) (m) =


1 · · · 1 0 0 0

1

0
... L(3) (m− 1)

0


, for m > 4

and
(m− 2) -th
↓

N (5) (m) =


1 · · · 1 0 0

1

0
... L(5) (m− 1)

0


, for m > 5,

then we have the following results:

Theorem 2.7. (i). For m > 4 and k = 1, 3, 4,

perN (k) (m) =
m∑
i=0

xki .

(ii). For m > 5 and k = 2, 6,

perN (k) (m) =
m∑
i=0

xki .
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(iii). For m > 5,

perN (5) (m) =
m+1∑
i=0

x5i .

Proof. Consider the subcase of k = 6 in case (ii). If we extend perN (6) (m) with respect to the
first row, we write

perN (6) (m) = perN (6) (m− 1) + perL(6) (m− 1) .

Thus, by the results and an inductive argument, the proof is easily seen.

2.7 Certain related determinants

A matrix M is called convertible if there is an n × n (1,−1)-matrix K such that perM =

det (M ◦K), where M ◦K denotes the Hadamard product of M and K.
Now we give relationships among the Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–

Fibonacci, Pell–Jacobsthal, Padovan–Pell and Padovan–Jacobsthal numbers, and the determinants
of the certain matrices which are obtained by using the matricesK(k) (m), L(k) (m) andN (k) (m).
Let k = 1, 2, . . . , 6 and let R be the m×m matrix, defined by

R =



1 1 1 · · · 1 1

−1 1 1 · · · 1 1

1 −1 1 · · · 1 1
... . . . ... . . . ...

...
1 · · · 1 −1 1 1

1 · · · 1 1 −1 1


.

Corollary 2.3. (i).
det
(
K(k) (m) ◦R

)
= xkm+3, for m ≥ 4 and k = 1, 3, 4

and
det
(
K(k) (m) ◦R

)
= xkm+4, for m ≥ 5 and k = 2, 5, 6.

(ii).
det
(
L(k) (m) ◦R

)
= xkm+1, for m ≥ 4 and k = 1, 3, 4,

det
(
L(k) (m) ◦R

)
= xkm+1, for m ≥ 5 and k = 2, 6

and
det
(
L(5) (m) ◦R

)
= x5m+2, for m ≥ 5.

(iii).

det
(
N (k) (m) ◦R

)
=

m∑
i=0

xki , for m > 4 and k = 1, 3, 4,

det
(
N (2) (m) ◦R

)
=

m∑
i=0

xki , for m > 5 and k = 2, 6

and

det
(
N (5) (m) ◦R

)
=

m+1∑
i=0

x5i , for m > 5.
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Proof. Since perK(k) (m) = det
(
K(k) (m) ◦R

)
, perL(k) (m) = det

(
L(k) (m) ◦R

)
and

perN (k) (m) = det
(
N (k) (m) ◦R

)
for k = 1, 2, . . . , 6, by Theorem 2.5, Theorem 2.6 and

Theorem 2.7, we have the conclusion.

2.8 Related sums

Now we consider the sums of the Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci,
Pell–Jacobsthal, Padovan–Pell and Padovan–Jacobsthal numbers. Let

Sn =
n∑

i=0

xki

for n ≥ 1 and let T k
1 and T k

2 be the 5× 5 and 6× 6 matrices as shown, respectively:

T k
1 =


1 0 0 0 0

1

0

0 Mk

0

 , for k = 1, 3, 4

and

T k
2 =



1 0 0 0 0 0

1

0

0 Mk

0

0


, for k = 2, 5, 6.

If we use induction on n, then we obtain

(
T k
1

)n
=


1 0 0 0 0

Sn+2

Sn+1

Sn (Mk)
n

Sn−1

 , for k = 1, 3, 4,

and

(
T k
2

)n
=



1 0 0 0 0 0

Sn+3

Sn+2

Sn+1 (Mk)
n

Sn

Sn−1


, for k = 2, 5, 6.
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[6] Deveci, Ö., & Artun, G. (2019). On the adjacency-Jacobsthal numbers. Communications in
Algebra, 47(11), 4520–4532.
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