Extension factor: Definition, properties and problems. Part 2

Krassimir T. Atanassov and József Sándor
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 26, 2020, Number 1, Pages 31–39
DOI: 10.7546/nntdm.2020.26.1.31-39
Full paper (PDF, 168 Kb)

Details

Authors and affiliations

Krassimir T. Atanassov
Department of Bioinformatics and Mathematical Modelling
IBPhBME – Bulgarian Academy of Sciences,
Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria
and
Intelligent Systems Laboratory
Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria

József Sándor
Babes-Bolyai University of Cluj, Romania

Abstract

Some new properties of the arithmetic function called “Extension Factor” and
introduced in Part 1 (see [5]) are studied.

Keywords

  • Arithmetic function
  • Extension factor

2010 Mathematics Subject Classification

  • 11A25

References

  1. Atanassov K. (1987). New integer functions, related to φ and σ functions, Bulletin of Number Theory and Related Topics, XI (1), 3–26.
  2. Atanassov, K. (1996). Irrational factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 2 (3), 42–44.
  3. Atanassov K. (2002). Converse factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 8 (1), 37– 38.
  4. Atanassov K. (2002). Restrictive factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 8 (4), 117–119.
  5. Atanassov, K. & Sándor, J. (2019). Extension factor: Definition, properties and problems. Part 1. Notes on Number Theory and Discrete Mathematics, 25 (3), 36–43.
  6. Ishikawa, I. (1934). Über die Verteileung der Primzahlen, Sci. Rep. Tokyo Univ., 2, 21–44.
  7. Mitrinovíc, & D., Popadíc, M. (1978). Inequalities in Number Theory. Nís, Univ. of Nís.
  8. Mitrinovíc, D., Sándor, J. (in coop. with B. Crstici). (1995). Handbook of Number Theory, Kluwer Acad. Publ.
  9. Panaitopol, L. (1998). On the inequality π(a).π(b) > π(ab). Bull. Math. Soc. Sci. Math. Roumanie, 41 (89), 2, 135–139.

Related papers

Cite this paper

Atanassov, K. T., & Sándor, J. (2020). Extension factor: Definition, properties and problems. Part 2. Notes on Number Theory and Discrete Mathematics, 26(1), 31-39, DOI: 10.7546/nntdm.2020.26.1.31-39.

Comments are closed.