Sungkon Chang

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 25, 2019, Number 3, Pages 21—35

DOI: 10.7546/nntdm.2019.25.3.21-35

**Download full paper: PDF, 240 Kb**

## Details

### Authors and affiliations

Sungkon Chang

*Department of Mathematics, Georgia Southern University, Armstrong Campus
11935 Abercorn St, Savannah GA, U.S.A.
*

### Abstract

If the two axes of symmetry of a quadratic form in two variables have integer coefficients, the reflection across the axes defines a group action on the primitive solutions of the Diophantine equation defined by the quadratic form. In this paper, we introduce quadratic forms with rational axes of symmetry that admit a single set of polynomials which parametrize their primitive solutions up to the reflections.

### Keywords

- Parametrization of primitive solutions

### 2010 Mathematics Subject Classification

- 11D09

### References

- Cox, D. A. (2013). Primes of the form
*x*^{2}+*ny*^{2}, Wiley. - Cuoco, A. (2000). Meta Problems in Mathematics, College Math. J., 31, 373–378.
- Davenport, H. (2000). Multiplicative Number Theory, Springer-Verlag, New York.
- Dickson, L. E. (1904). A new extension of Dirichlet’s theorem on prime numbers, Messenger of Math., 33, 155–161.
- Frisch, S., & Vaserstein, L.(2008) Parametrization of Pythagorean triples by a single triple of polynomials, J. Pure Appl. Algebra, 212 (1), 271–274.
- Frisch, S.,& Lettl, G. (2008). Polynomial parametrization of the solutions of Diophantine equations of genus 0, Funct. Approx. Comment. Math., 39 (2) (Narkiewicz Volume), 205–209.
- Gilder, J. (1982). Integer-sided triangles with a 60
**°**angle, Math Gazette, 66, 261–266. - Green, B. & Tao, T. (2010). Linear equations in primes, Ann. Math., 171, 1753–1850.
- Jones, G. & Jones, J. M. (1998). Elementary Number Theory, Springer.
- Petulante, N., & Kaja, I. (2000). How to generate all integral triangles containing a given angle, Internat. J. Math. & Math. Sci., 24, 569–572.
- Read, E. (2006). On integer-sided triangles containing angles of 120
**°**or 60**°**, Math. Gazette, 90, 299–305. - Selkirk, K. (1983). Integer-sided triangles with angle of 120
**°**, Math. Gazette, 67, 251–255. - Shafarevich, I. R. (1994). Basic Algebraic Geometry 1: Varieties in Projective Space, Springer-Verlag.
- Sierpinski, W. (2011) Pythagorean Triangles, Dover Publications.
- Silverman, J. H. & Tate, J., (1992). Rational Points on Elliptic Curves, Springer.
- Stewart, B. M. (1964). The Theory of Numbers, MacMillan, New York, NY.
- Vaserstein, L. (2010). Polynomial parametrization for the solutions of Diophantine equations and arithmetic groups, Ann. of Math., 171, 979–1009.

## Related papers

## Cite this paper

APAChang, S. (2019). Direct parametrization of Pythagorean triples. Notes on Number Theory and Discrete Mathematics, 25(3), 21-35, doi: 10.7546/nntdm.2019.25.3.21-35.

ChicagoChang, Sungkon. “Direct Parametrization of Pythagorean Triples.” Notes on Number Theory and Discrete Mathematics 25, no. 3 (2019): 21-35, doi: 10.7546/nntdm.2019.25.3.21-35.

MLAChang, Sungkon. “Direct Parametrization of Pythagorean Triples.” Notes on Number Theory and Discrete Mathematics 25.3 (2019): 21-35. Print, doi: 10.7546/nntdm.2019.25.3.21-35.