Pentti Haukkanen

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 25, 2019, Number 2, Pages 1—7

DOI: 10.7546/nntdm.2019.25.2.1-7

**Download full paper: PDF, 150 Kb**

## Details

### Authors and affiliations

Pentti Haukkanen

*Faculty of Information Technology and Communication Sciences
FI-33014 Tampere University, Finland
*

### Abstract

Let 0 ≠ *S* ⊆ ℙ. The arithmetic subderivative of *n* with respect to *S* is defined as

*D*_{S}(*n*) = *n* ∑_{p∈S} *ν*_{p}(*n*)/*p*,

where *n* = Π_{p ∈ ℙ} *p*^{νp(n)} ∈ ℤ_{+}. In particular, *D*_{ℙ}(*n*) = *D*(*n*) is the arithmetic derivative of *n*, and *D*_{{p}}(*n*) = *D*_{p}(*n*) is the arithmetic partial derivative of *n* with respect to *p* ∈ ℙ.

For each *p* ∈ *S*, let *f _{p}* be an arithmetic function. We define generalized arithmetic subderivative of

*n*with respect to

*S*as

*D _{S}^{f}*(

*n*) =

*n*∑

_{p∈S}

*f*(

_{p}*n*)/

*p*,

where *f* stands for the collection (*f _{p}*)

_{p∈S}of arithmetic functions. In this paper, we examine for which kind of functions

*f*the generalized arithmetic subderivative is obeys the Leibniz-rule, preserves addition, “usual multiplication” and “scalar multiplication”.

_{p}### Keywords

- Arithmetic derivative
- Arithmetic partial derivative
- Arithmetic subderivative
- Arithmetic function
- Completely additive function
- Completely multiplicative function
- Leibniz rule

### 2010 Mathematics Subject Classification

- 11A25
- 11A41

### References

- Apostol, T. M. (1976). Introduction to Analytic Number Theory, Springer-Verlag, New York.
- Atanassov, K. T. (1987). New integer functions, related to
*φ*and*σ*functions, Bull. Number Theory Related Topics 11 (1–3), 3–26. - Barbeau, E. J. (1961). Remarks on an arithmetic derivative, Canad. Math. Bull. 4 (2), 117– 122.
- Haukkanen, P. (2012). Extensions of the class of multiplicative functions, East–West J. Math. 14 (2), 101–113.
- Haukkanen, P., Merikoski, J. K., Mattila, M., & Tossavainen, T. (2017). The arithmetic Jacobian matrix and determinant, J. Integer Seq. 20, Article 17.9.2.
- Haukkanen, P., Merikoski, J. K., & Tossavainen, T. (2016). On arithmetic partial differential equations, J. Integer Seq. 19, Article 16.8.6.
- Haukkanen, P., Merikoski, J. K., & Tossavainen, T. (2018). The arithmetic derivative and Leibniz-additive functions, Notes on Number Theory and Discrete Mathematics 24 (3), 68–76.
- Kovic, J. (2012). The arithmetic derivative and antiderivative, J. Integer Seq. 15, Article 12.3.8.
- McCarthy, P. J. (1986). Introduction to Arithmetical Functions, Springer-Verlag, New York.
- Merikoski, J. K., Haukkanen, P., & Tossavainen, T. (2019). Arithmetic subderivatives and Leibniz-additive functions, Ann. Math. Inform., accepted.
- Sandor, J. & Crstici, B. (2004). Handbook of Number Theory II, Kluwer Academic, Dordrecht.
- Sivaramakrishnan, R. (1989). Classical Theory of Arithmetic Functions, Monographs and Textbooks in Pure and Applied Mathematics 126, Marcel Dekker.
- Ufnarovski, V. & Ahlander, B. (2003). How to differentiate a number, J. Integer Seq. 6, Article 03.3.4.

## Related papers

## Cite this paper

APAHaukkanen, P. (2019). Generalized arithmetic subderivative. Notes on Number Theory and Discrete Mathematics, 25(2), 1-7, doi: 10.7546/nntdm.2019.25.2.1-7.

ChicagoHaukkanen, Pentti. “Generalized Arithmetic Subderivative.” Notes on Number Theory and Discrete Mathematics 25, no. 2 (2019): 1-7, doi: 10.7546/nntdm.2019.25.2.1-7.

MLAHaukkanen, Pentti. “Generalized Arithmetic Subderivative.” Notes on Number Theory and Discrete Mathematics 25.2 (2019): 1-7. Print, doi: 10.7546/nntdm.2019.25.2.1-7.