Minimal sets of shifted values of the Euler totient function

Martin Kreh and Katrin Neuenstein
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 1, Pages 36—47
DOI: 10.7546/nntdm.2019.25.1.36-47
Download full paper: PDF, 193 Kb

Details

Authors and affiliations

Martin Kreh
Institute for Mathematics and Applied Computer Science, University of Hildesheim
Samelsonplatz 1, 31141 Hildesheim, Germany

Katrin Neuenstein
Institute for Mathematics and Applied Computer Science, University of Hildesheim
Samelsonplatz 1, 31141 Hildesheim, Germany

Abstract

In this article we determine the minimal set for some sets of natural numbers. The concept of minimal sets (in the context of natural numbers) appeared first in an article of Shallit, who determined, among others, the minimal set of the primes. By now, there are several articles about minimal sets. In this article we will expand results of Baoulina, Kreh and Steuding, who determined the minimal set of the sets φ(ℕ) and φ(ℕ) + 3. To this end, we will determine the minimal set of the sets φ(ℕ) + a for 1 ≤ a ≤ 5.

Keywords

  • Minimal set
  • Euler totient function

2010 Mathematics Subject Classification

  • 00A08
  • 11A25

References

  1. Baker, A. (1969). Bounds for the solutions of the hyperelliptic equation, Proc. Camb. Phil. Soc., 65, 439–444.
  2. Bright, C., Devillers, R., & Shallit, J. (2016). Minimal elements for the prime numbers, Exp. Math., 25(3), 321–331.
  3. Baoulina, I. N., Kreh, M., & Steuding, J. (2017). Deleting digits, Math. Gaz., 101 (550), 60–68.
  4. Gruber, H., Holzer, M., & Kutrib, M. (2007). The size of Higman–Haines sets, Theoret. Comput. Sci., 387 (2), 167–176.
  5. Gruber, H., Holzer, M., & Kutrib, M. (2009). More on the size of Higman–Haines sets: effective constructions, Fund. Inform., 91 (1), 105–121.
  6. Goldschmied, M. (2013). Über Mengen natürlicher Zahlen und ihre Ziffernfolgen, Bachelorthesis, Available online at: https://www.mathematik.uni-wuerzburg.de/˜steuding/goldsch.pdf.
  7. Higman, G. (1952). Ordering by divisibility in abstract algebras, Proc. London Math. Soc., 2, 326–336.
  8. Kreh, M. (2015). Minimal sets, J. Integer Seq., 18 (5), Article 15.5.3, 38 pp.
  9. Maier, H. & Pomerance, C. (1988). On the number of distinct values of Euler’s φ-function, Acta Arith., 49 (3), 263–275
  10. Shallit, J. (2000). Minimal primes, J. Recreat. Math., 30, 113–117.
  11. Sakarovitch J. & and Simon, I. (1983). Subwords, in: Combinatorics on Words, Encyclopedia of Mathematics and Its Applications, Vol. 17, Addison-Wesley.

Related papers

Cite this paper

APA

Kreh, M. & Neuenstein, K. (2019). Minimal sets of shifted values of the Euler totient function. Notes on Number Theory and Discrete Mathematics, 25(1), 36-47, doi: 10.7546/nntdm.2019.25.1.36-47.

Chicago

Kreh, Martin and Katrin Neuenstein. “Minimal Sets of Shifted Values of the Euler Totient Function.” Notes on Number Theory and Discrete Mathematics 25, no. 1 (2019): 36-47, doi: 10.7546/nntdm.2019.25.1.36-47.

MLA

Kreh, Martin and Katrin Neuenstein. “Minimal Sets of Shifted Values of the Euler Totient Function.” Notes on Number Theory and Discrete Mathematics 25.1 (2019): 36-47. Print, doi: 10.7546/nntdm.2019.25.1.36-47.

Comments are closed.