József Sándor

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 24, 2018, Number 3, Pages 92—94

DOI: 10.7546/nntdm.2018.24.3.92-94

**Download full paper: PDF, 133 Kb**

## Details

### Authors and affiliations

József Sándor

* Department of Mathematics, Babeș-Bolyai University
Str. Kogalniceanu nr.1, 400084 Cluj, Romania
*

### Abstract

We prove an inequality for a ratio of zeta functions. This extends a classical result (see [2]). The method is based on Dirichlet series, combined with real analysis.

### Keywords

- Riemann zeta function
- Dirichlet series
- Inequalities for real functions

### 2010 Mathematics Subject Classification

- 11A25
- 11N37
- 26D20

### References

- Hardy, G. H., & Wright, E. M. (1964) An Introduction to the Theory of Numbers, Oxford Univ. Press.
- Titchmarsh, E. C. (1951) The Theory of the Riemann Zeta Function, Oxford.

## Related papers

## Cite this paper

APASándor, J. (2018). An inequality involving a ratio of zeta functions. Notes on Number Theory and Discrete Mathematics, 24(3), 92-94, doi: 10.7546/nntdm.2018.24.3.92-94.

ChicagoSándor, József. “An Inequality Involving a Ratio of Zeta Functions. “Notes on Number Theory and Discrete Mathematics 24, no. 3 (2018): 92-94, doi: 10.7546/nntdm.2018.24.3.92-94.

MLASándor, József. “An Inequality Involving a Ratio of Zeta Functions. “Notes on Number Theory and Discrete Mathematics 24.3 (2018): 92-94. Print, doi: 10.7546/nntdm.2018.24.3.92-94.