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Abstract: We prove an inequality for a ratio of zeta functions. This extends a classical result (see
[2]). The method is based on Dirichlet series, combined with real analysis.
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Let 𝜔(𝑛) denote the number of distinct prime divisors of 𝑛. Then 𝜔(1) = 0 and 𝜔(𝑛) is an
additive function, i.e.

𝜔(𝑚𝑛) = 𝜔(𝑚) + 𝜔(𝑛) for all (𝑚,𝑛) = 1.

This implies immediately that the function

𝑓(𝑛) = 𝑘𝜔(𝑛)

(where 𝑘 ≥ 2 is fixed) is a multiplicative function, i.e. satisfies the functional equation

𝑓(𝑚𝑛) = 𝑓(𝑚) · 𝑓(𝑛) for all (𝑚,𝑛) = 1, (1)

where 𝑓(1) = 1.

A general Dirichlet series is an infinite series of type
∞∑︁
𝑛=1

𝑎𝑛
𝑛𝑠

, where 𝑠 ∈ C is such that the

series is convergent. For 𝑎𝑛 = 1, we get the Riemann zeta function

𝜁(𝑠) =
∞∑︁
𝑛=1

1

𝑛𝑠
,
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which is convergent e.g. for all Re 𝑠 > 1. Another Dirichlet series is obtained when

𝑎𝑛 = 𝑓(𝑛) = 𝑘𝜔(𝑛).

We will prove in what follows the following result:
Theorem. Let 𝑠 > 1 a fixed positive integer. Then one has the inequality

∞∑︁
𝑘=1

𝑘𝜔(𝑛)

𝑛𝑠
≤ 𝜁𝑘(𝑠)

𝜁(𝑘𝑠)
, (2)

with equality only for 𝑘 = 2.

For the proof, the following well-known result will be applied (see e.g. [1]).

Lemma 1. Let 𝑓 be a multiplicative arithmetical function, and let the series
∑︀∞

𝑛=1 𝑓(𝑛) be
absolutely convergent. Then we have the identity:

∞∑︁
𝑛=1

𝑓(𝑛) =
∏︁

𝑝 prime

(1 + 𝑓(𝑝) + 𝑓(𝑝2) + . . .). (3)

We shall need also the following auxiliary result:

Lemma 2. Let 0 < 𝑥 ≤ 1

2
and 𝑘 ≥ 2. Then

1− 𝑥𝑘 ≥ (1− 𝑥)𝑘−1[1 + 𝑥(𝑘 − 1)]. (4)

Inequality (4) may be written also as

1− 𝑥𝑘 ≥ (1− 𝑥)𝑘−1[(1− 𝑥+ 𝑘𝑥)] = (1− 𝑥)𝑘 + 𝑘𝑥(1− 𝑥)𝑘−1.

Let us define
𝑔(𝑥) = 𝑥𝑘 = (1− 𝑥)𝑘 + 𝑘𝑥(1− 𝑥)𝑘−1, 𝑔 : [0, 1] → R.

We have to prove that 𝑔(𝑥) ≤ 1. One has

𝑔(1) = 𝑔(0) = 1 and 𝑔′(𝑥) = 𝑘𝑥[𝑥𝑘−2 − (𝑘 − 1)(1− 𝑥)𝑘−2].

Remark that, as 0 < 𝑥 ≤ 1

2
, we have 0 < 𝑥 ≤ 1− 𝑥, so

𝑥𝑘−2 ≤ (1− 𝑥)𝑘−2 ≤ (𝑘 − 1)(1− 𝑥)𝑘−2,

with equality only for 𝑘 = 2. Thus we get 𝑔′(𝑥) ≤ 0, implying

𝑔(𝑥) ≤ 𝑔(0) = 1.

Remark. The above proof shows that there is equality in (4) only for 𝑘 = 2.

Proof of Theorem. Letting

𝑓(𝑛) =
𝑘𝜔(𝑛)

𝑛𝑠

in Lemma 1, we get
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∞∑︁
𝑛=1

𝑘𝜔(𝑛)

𝑛𝑠
=

∏︁
𝑝 prime

(︂
1 +

𝑘

𝑝𝑠
+

𝑘

𝑝2𝑠
+ . . .

)︂
(5)

For 𝑓(𝑛) =
1

𝑛𝑠
in the same Lemma 1, we get Euler’s identity

∞∑︁
𝑘=1

1

𝑛𝑠
=

∏︁
𝑝 prime

(︂
1 +

𝑘

𝑝𝑠
+

𝑘

𝑝2𝑠
+ . . .

)︂
=

∏︁
𝑝 prime

1

1− 1

𝑝𝑠

.

Thus, by using Euler’s identity, we get

𝜁(𝑘𝑠) =
∏︁

𝑝 prime

1

1− 1

𝑝𝑘𝑠

,

i.e.,

𝜁𝑘(𝑠)

𝜁(𝑘𝑠)
=

∏︁
𝑝 prime

1− 1

𝑝𝑘𝑠(︂
1− 1

𝑝𝑠

)︂𝑘
(6)

Put now 𝑥 =
1

𝑝𝑠
. As 𝑠 > 1 and 𝑝 ≥ 2, clearly 𝑥 <

1

2
. So we can apply Lemma 2, which implies

1− 𝑥𝑘

(1− 𝑥)𝑘
≥ 1 + 𝑥(𝑘 − 1)

1− 𝑥
(7)

In relation (5) one has

1 +
𝑘

𝑝𝑠
+

𝑘

𝑝2𝑠
+ . . . = 1 + 𝑘𝑥+ 𝑘𝑥2 + . . .

= 1 + 𝑘𝑥(1 + 𝑥+ 𝑥2 + . . .)

= 1 +
𝑘𝑥

𝑥− 1
=

1 + 𝑥(𝑘 − 1)

𝑥− 1
.

By relations (6) and (7), this implies inequality (2), finishing the proof of Theorem. �

Remark. For 𝑘 = 2 we get the known identity (see [2])

∞∑︁
𝑘=1

2𝜔(𝑛)

𝑛𝑠
=

𝜁2(𝑠)

𝜁(2𝑠)
.
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