Quotients of primes in an algebraic number ring

Brian D. Sittinger
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 24, 2018, Number 2, Pages 55–62
DOI: 10.7546/nntdm.2018.24.2.55-62
Download full paper: PDF, 191 Kb

Details

Authors and affiliations

Brian D. Sittinger
Department of Mathematics, California State University Channel Islands
1 University Drive, Camarillo, CA 93010, United States

Abstract

It has been established on many occasions that the set of quotients of prime numbers is dense in the set of positive real numbers. More recently, it has been proved that the set of quotients of primes in the Gaussian integers is dense in the complex plane. In this article, we not only extend this result to any imaginary quadratic number ring, but also prove that the set of quotients of primes in any real quadratic number ring is dense in the set of real numbers. To conclude, we show how to extend these results to an arbitrary algebraic number ring.

Keywords

  • Prime number
  • Prime ideal
  • Number ring

2010 Mathematics Subject Classification

  • 11R04
  • 11R44
  • 11A41
  • 11N05

References

  1. Brown, B., Dairyko, M., Garcia, S., Lutz, B., & Someck, M. (2014) Four Quotient Set Gems, Amer. Math. Monthly, 121, 590–598.
  2. Hecke, E. (1920) Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen II, Math. Zeitschr. 6, 11–51.
  3. Hinz, J. (1981) On the Theorem of Barban and Davenport–Halberstam in Algebraic Number Fields., J. Number Theory, 13 (4), 463–484.
  4. Garcia, S., Selhorst-Jones, V., Ponce, D., &Simon, N. (2011) Quotient Sets and Diophantine Equations, Amer. Math. Monthly, 118, 704–711.
  5. Garcia, S. (2013) Quotients of Gaussian Primes, Amer. Math. Monthly, 120, 851–853.
  6. Hobby, D. & Silberger, D. (1993) Quotients of primes, Amer. Math. Monthly, 100, 50–52.
  7. Kubilius, J. (1950) The distribution of Gaussian primes in sectors and contours, Leningrad. Gos. Univ. Uˇc. Zap, Cer. Mat. Nauk, 137 (19), 40–52.
  8. Kubilius, J. (1952) On some problems of the geometry of prime numbers, Mat. Sbornik N.S., 31 (73), 507–542.
  9. Marcus, D. (1995) Number Fields (2nd ed.), Springer-Verlag.
  10. Micholson, A. (2012) Quotients of primes in arithmetic progressions, Notes on Number Theory and Discrete Mathematics, 18 (2), 56–57.
  11. Mitsui, T. (1956) Generaized Prime Number Theorem, Jap. J. Math., 26, 1–42.
  12. Rademacher, H. (1935) Uber die Anzahl der Primzahlen eines reell-quadratischen Zahlkorpers, deren Konjugierten unterhalb gegebener Grenzen liegen, Acta Arith., 1, 67–77.
  13. Sierpinski, W. (1988) Elementary Theory of Numbers (2nd ed.), North-Holland, Amsterdam.
  14. Sittinger, B. (2017) A Note on the Density of Quotients of Primes in Arithmetic Progressions, Notes on Number Theory and Discrete Mathematics, 23 (1), 99–100.
  15. Starni, P. (1995) Answers to two questions concerning quotients of primes, Amer. Math. Monthly, 102, 347–349.
  16. Stewart, I. & Tall, D. (2001) Algebraic Number Theory and Fermat’s Last Theorem (3rd ed.), AK Peters/CRC Press.

Related papers

Cite this paper

APA

Sittinger, B. D. (2018). Quotients of primes in an algebraic number ring. Notes on Number Theory and Discrete Mathematics, 24(2), 55-62, doi: 10.7546/nntdm.2018.24.2.55-62.

Chicago

Sittinger, Brian D. “Quotients of Primes in an Algebraic Number Ring.” Notes on Number Theory and Discrete Mathematics 24, no. 2 (2018): 55-62, doi: 10.7546/nntdm.2018.24.2.55-62.

MLA

Sittinger, Brian D. “Quotients of Primes in an Algebraic Number Ring.” Notes on Number Theory and Discrete Mathematics 24.2 (2018): 55-62. Print, doi: 10.7546/nntdm.2018.24.2.55-62.

Comments are closed.