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Abstract: It has been established on many occasions that the set of quotients of prime num-
bers is dense in the set of positive real numbers. More recently, it has been proved that the set
of quotients of primes in the Gaussian integers is dense in the complex plane. In this article, we
not only extend this result to any imaginary quadratic number ring, but also prove that the set
of quotients of primes in any real quadratic number ring is dense in the set of real numbers. To
conclude, we show how to extend these results to an arbitrary algebraic number ring.
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1 Introduction

It is a standard fact from Real Analysis that Q is a dense subset of R. However, it is not as well-
known that the set of quotients of prime numbers is a dense subset of R>0. One of the earliest
appearances of this fact is in Sierpiński’s textbook on Number Theory [13]. This fact, along
with a few variations of it, has been studied and explored in great detail through the years; see
[1, 4, 6, 10, 15] for instance. These results are proved by using some variant of the Prime Number
Theorem, which as a reminder we now state in its classic formulation below.

Proposition 1.1. If π(x) denotes the number of prime numbers in N less than or equal to some

x > 0, then π(x) ∼ x

lnx
. In other words, lim

x→∞

π(x)
x

lnx

= 1.

Recently, Garcia ([5]) established that the set of quotients of primes from the ring of Gaussian
integers Z[i] is dense in C by using a suitable generalization of the Prime Number Theorem to
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Z[i]. We generalize his work by showing that the set of quotients of primes from any fixed
imaginary quadratic ring is dense in C. This method of proof also permits use to show with
little effort that the set of quotients of primes belonging to a fixed congruence class of Gaussian
integers is dense in C.

After accomplishing this task, we turn our attention to real quadratic number rings, where we
show that the set of quotients of primes from a given real quadratic ring is dense in R. Finally,
we show how to establish analogous density results for the set of quotients of primes from any
algebraic number ring.

In this article, we refer to the prime numbers in N as rational primes, in order to distinguish
them from the prime elements in a given algebraic number ring.

2 Background on algebraic number rings

We first fix some notation for an algebraic number ring. For further details, check any textbook
on Algebraic Number Theory, such as [9] and [16].

Let K denote an algebraic number field over Q (that is, [K : Q] < ∞) with O being its
corresponding number ring. In particular, a quadratic number field has the form Q(

√
d) for any

square-free integer d. Its ring of integers O, called a quadratic number ring, is the set {a + bω :

a, b ∈ Z}, where

ω =


√
d if d 6≡ 1 mod 4

1+
√
d

2
if d ≡ 1 mod 4.

Although we do not necessarily have unique factorization into irreducible elements in O, we
do have unique factorization into prime ideals in O. One way to ‘measure’ how far O is from
being a UFD is as follows: we set up an equivalence relation on the ideals inO as follows: we say
that two ideals a and b inO are equivalent if there exist nonzero α, β ∈ O such that 〈α〉a = 〈β〉b.
This equivalence partitions the ideals into disjoint ideal classes that form a finite abelian group
called the class group of O. Its cardinality is called the class number of O and is denoted by h.
For what we need, it should be noted that the trivial ideal class is the class of principal ideals, and
thus O is a UFD iff h = 1 (as all ideals in a UFD are principal). The trivial ideal class is of chief
interest to us, because a generator of a principal prime ideal gives a prime element in O.

3 Quotients of primes in an imaginary quadratic ring

In this section, we extend the density result for the Gaussian integers [5] to any imaginary
quadratic number ring O. To do this, we use the following ‘angular’ prime number theorem
of Kubilius [8] and Hecke [2]. It states that any sector {z ∈ C : θ1 < arg z < θ2} in the complex
plane contains prime elements of arbitrarily large magnitude.

Proposition 3.1. Let O be an imaginary quadratic number ring. Fix 0 ≤ θ1 < θ2 ≤ 2π and
x > 0, and let Π(x; θ1, θ2) denote the number of prime elements ρ ∈ O satisfying |ρ|2 ≤ x and
θ1 < arg ρ < θ2. Then,
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Π(x; θ1, θ2) ∼
g(θ2 − θ1)

2πh
· x

lnx
,

where g denotes the number of units in O.

The presence of h in this prime number formula signifies that we are looking at the principal
ideal class. Moreover, the significance of g follows from the fact that a generator of a principal
ideal is unique up to multiplication by a unit in O.

A consequence of this proposition we will use is that if 0 < a < b, then for all sufficiently
large real x, an annular sector

{z ∈ C : ax < |z|2 < bx and θ1 < arg z < θ2},

contains a prime element in O. This follows from straightforward calculus:

lim
x→∞

[Π(bx; θ1, θ2)− Π(ax; θ1, θ2)] = lim
x→∞

Π(bx; θ1, θ2)
[
1− Π(ax; θ1, θ2)

Π(bx; θ1, θ2)

]
= lim

x→∞
Π(bx; θ1, θ2)

[
1− ax ln(bx)

bx ln(ax)

]
=
(

1− a

b

)
lim
x→∞

Π(bx; θ1, θ2)

=∞.

Now, we state the desired variant of a prime number theorem to deduce the desired density
result for any imaginary quadratic number ring.

Theorem 3.2. The set of quotients of primes in an imaginary quadratic ring O is dense in the
complex plane.

Proof. It suffices to show that any annular sector

{z ∈ C : ψ1 < arg z < ψ2, 0 < r < |z| < R}

contains a quotient of prime numbers in O.
Fixing θ ∈ (0, 2π], since

lim
x→∞

[
Π
( x
r2

; 0, θ
)
− Π

( x

R2
; 0, θ

)]
=∞,

there exists x0 > 0 such that

Π
( x
r2

; 0, θ
)
− Π

( x

R2
; 0, θ

)
≥ 2 for allx ≥ x0.

Moreover, since the angular prime number theorem implies that there are infinitely many
prime numbers in O in the sector (ψ1, ψ2), there exists a prime number π1 in the sector (ψ1, ψ2)

with sufficiently large magnitude (|π1|2 > x0) such that

Π
( |π1|2
r2

; 0, ξ
)
− Π

( |π1|2
R2

; 0, ξ
)
≥ 2,

where ξ = min{ψ2 − arg(π1), arg(π1)− ψ1}.
Next, the inequality in the last assertion implies that there exists a prime number π2 satisfying

|π1|
R

< |π2| <
|π1|
r

and 0 < arg(π2) < ξ.

From this, it now follows that r <
∣∣∣π1
π2

∣∣∣ < R and ψ1 < arg
(π1
π2

)
< ψ2.
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4 Quotients of Gaussian primes, revisited

Recall that the ring of Gaussian integers Z[i] is the set of integers in the field Q(i) and have the
form a + bi where a, b ∈ Z. This set is well-known to be a UFD with units ±1,±i. It can be
shown (see [9] or [16]) that a nonzero Gaussian integer is a prime if and only if it is an associate
of p (namely ±p and ±pi) for some rational prime p ≡ 3 mod 4, or it is of the form a+ bi ∈ Z[i]

where a2 + b2 is a rational prime. We refer to these primes as Gaussian primes.
Note that the proof of Theorem 3.2 applied to Z[i] does not rely on a specific type of a Gaus-

sian prime, while the proof in [5] fixes the Gaussian prime in the denominator be a rational prime
congruent to 3 mod 4. Although this latter idea simplifies the density proof a bit with regards to
the argument of the prime, it does not allow for the denominator to be an associate of a Gaussian
prime that is not a rational prime.

We exploit this distinction to show how flexible the techniques from our previous density
proof is, as we can modify it to give a Gaussian integer analogue of the following fact [14]:

Proposition 4.1. Fix a, b,m, n ∈ N such that gcd(a,m) = gcd(b, n) = 1. Then,{p
q

: p, q prime in Z, p ≡ a mod m, and q ≡ b mod n
}

is dense in R.

To state and prove this generalization, we note that the Gaussian integers have a notion of
congruence as well. Fix γ ∈ Z[i]; for α, β ∈ Z[i] we write α ≡ β mod γ iff γ | (β − α). With
this notation, we can now state the following ‘Dirichlet’ variant of the prime number theorem [7].

Proposition 4.2. Fix 0 ≤ θ1 < θ2 ≤ 2π and x > 0, and let Π(x; θ1, θ2; β, γ) denote the number
of Gaussian primes ρ ≡ β mod γ satisfying θ1 < arg ρ < θ2 and |ρ|2 ≤ x. Then,

Π(x; θ1, θ2; β, γ) ∼ 4(θ2 − θ1)
2πφ(γ)

· x

lnx
,

where φ(γ) denotes the number of invertible congruence classes modulo γ.

It should be noted that this proposition asserts that the Gaussian primes are equidistributed
both by argument and by congruence class. Moreover, the φ function above is an extension of the
Euler phi function to Z[i].

By adapting the proof of Theorem 3.2 with this variation of the prime number theorem, we
immediately obtain the following result.

Theorem 4.3. Fix β1, β2, γ1, γ2 ∈ Z[i] such that gcd(β1, γ1) = gcd(β2, γ2) = 1. Then, the set of
quotients {π1

π2
: π1, π2 are Gaussian primes, π1 ≡ β1 mod γ1, and π2 ≡ β2 mod γ2

}
is dense in C.
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5 Quotients of primes in a real quadratic number ring

In this section, suppose that O is a real quadratic number ring. These rings are quite different
than their imaginary counterparts. First, since a real quadratic number ring is a subset of R, we
will be stating a density statement in R instead of C. Secondly, a real quadratic number ring has
infinitely many units. Fortunately, any such unit can be written in the form±ηk for some integer k
and fixed unit η ∈ O called a fundamental unit of O. Without loss of generality, we may assume
that η > 1.

There is a Prime Number Theorem for real quadratic number rings that dates back to the work
of Hecke [2], but we will use the following refinement of Rademacher [12]. To state the theorem,
we use the following definition: we say that α ∈ O is totally positive if both α and its conjugate
α′ are positive. (Recall that for any a, b ∈ Q, the conjugate of a+ b

√
d equals a− b

√
d.)

Proposition 5.1. Let O be a real quadratic number ring. Fix x > 0, and let Π(x) denote the
number of totally positive prime elements ρ ∈ O satisfying 0 < ρ ≤ x. Then, we have

Π(x) ∼ 1

2h ln η

∫ x

2

∫ x

2

du dv

ln(uv)
.

It should be noted that the double integral is asymptotically equal to x2

ln(x2)
[3]. By letting

x → ∞, this theorem shows that there are infinitely many totally positive prime elements in O.
Now, we use this result to readily establish the density of quotients of primes in O.

Theorem 5.2. The set of quotients of primes in a real quadratic number ring O is dense in R.

Proof. We need to show that any given interval (a, b) contains a quotient of primes inO. Assume
without loss of generality that a, b > 0. Then it follows directly from Proposition 5.1 that

lim
x→∞

(Π(bx)− Π(ax)) =∞.

This implies that for all sufficiently large x, there exists a prime π1 ∈ O such that ax < π1 < bx.
Then, since there exist primes inO with arbitrarily large magnitude by Proposition 5.1, let x = π2
for some prime π2 ∈ O. This immediately yields a < π1

π2
< b, as required.

Remark: An alternate proof suggested in private conversation with Garcia uses previous quotient
set density theorems and bypasses the use of Proposition 5.1. As a trade-off, it does not allow for
the possibility of using non-rational prime numbers to establish the density result and ultimately
does not generalize to an arbitrary algebraic number ring. It relies on the following fact [9]:

Given a real quadratic number field Q(
√
d) with d > 0 and square-free,

an odd rational prime p remains prime in O iff d is not a square modulo p.

By fixing d, this condition gives a set of congruences that p satisfies in terms of d. Pick
one such congruence condition; by Dirichlet’s Theorem on Arithmetic Progressions, there are in-
finitely many such primes. Applying Proposition 4.1 to this congruence condition yields Theorem
5.2.
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6 Quotients of primes in an algebraic number ring

Now, suppose that K is an algebraic number field of degree n over Q with ring of integers O.
Before proceeding further, we need to fix some more notation. Let n = s+ 2t and r = s+ t− 1,
where s denotes the number of real embeddings and s denotes the number of pairs of complex
embeddings ofK. For an element ω ∈ O, let ω(j) denote the image of ω under the jth embedding
of K into Minkowski space Ls,t = Rs × Ct with j = 1, 2, ..., s + t. Without loss of generality,
assume that the trivial real and complex embeddings give the first and (s + 1)-th entries of the
ordered tuples in Ls,t.

Now, we are able to state a version of Mitsui’s generalized Prime Number Theorem [11]
suitable for our purpose.

Theorem 6.1. Fix 0 ≤ θ1 < θ2 ≤ 2π, and let Π(Y ; θ1, θ2) denote the number of prime elements
ω ∈ O satisfying |ω(j)| ≤ Y for each j = 1, ..., s + t and θ1 < arg(ω(k)) < θ2 for each
k = s+ 1, ..., s+ t. Then, for all Y ≥ 3, we have

Π(Y ; θ1, θ2) ∼
(θ2 − θ1

2π

)t g

2shR

∫
· · ·
∫

[2,Y ]s×[2,Y 2]t

dx1...dxs+t
ln(x1...xs+t)

,

where g is the number of roots of unity in K, and R is the regulator of K.

Remark: In the case of a real quadratic number ring (s = 2 and t = 0), this result reduces to
Proposition 5.1, and in the case of an imaginary quadratic number ring (s = 0 and t = 1), this
result reduces to Proposition 3.1.

By [3], the multiple integral is asymptotically equal to Y n

ln(Y n)
. Then, by letting Y →∞, this

theorem shows that there are infinitely many prime elements in O satisfying the desired angular
constraints.

Now, we use this result to readily establish the density of quotients of primes in any algebraic
number ringO. With this theorem, and using the techniques of proof from the imaginary and real
quadratic number rings (Theorems 3.2 and 5.2), we are now able to prove the main result of this
paper.

Theorem 6.2. Let K be an algebraic number field over Q with ring of integers O. If K ⊆ R,
then any quotient set of prime elements in O is dense in R. Otherwise, if R ( K ⊆ C, then any
quotient set of prime elements in O is dense in C.

Proof: First, assume that K ⊆ R. We need to show that there exist a quotient of prime elements
in O in any interval (a, b). Without loss of generality, assume that a > 0. Then it follows directly
from the generalized Prime Number Theorem that

lim
x→∞

(Π(bx; 0, 2π)− Π(ax; 0, 2π)) =∞.

By considering the first copy of R in Ls,t, the last assertion implies that for all sufficiently large
x, there exists a prime π1 ∈ O such that ax < π1 < bx. Next, since there exist primes in O
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with arbitrarily large magnitude by the generalized Prime Number Theorem, let x = π2 for some
prime π2 ∈ O. This immediately yields a < π1

π2
< b, as required.

Next, assume that R ( K ⊆ C. It suffices to show that any annular sector {z ∈ C : ψ1 <

arg z < ψ2, 0 < r < |z| < R} contains a quotient of prime numbers in O. It follows from the
generalized Prime Number Theorem that

lim
x→∞

[
Π
(x
r

;ψ1, ψ2

)
− Π

( x
R

;ψ1, ψ2

)]
=∞.

Then, there exists x0 > 0 such that

Π
(x
r

;ψ1, ψ2

)
− Π

( x
R

;ψ1, ψ2

)
≥ 2 for allx ≥ x0.

Moreover, since the generalized Prime Number Theorem implies that there are infinitely many
prime numbers ω ∈ O satisfying θ1 < arg(ω(k)) < θ2 for each k = s + 1, ..., s + t, there exists
a prime π1 ∈ O satisfying arg(π

(k)
1 ) ∈ (0, ξ) for each k = s + 1, ..., s + t with sufficiently large

magnitude (|π1| > x0) such that

Π
( |π1|
r

; 0, ξ
)
− Π

( |π1|
R

; 0, ξ
)
≥ 2,

where ξ = min{ψ2 − arg(π1), arg(π1)− ψ1)}.
Next, by considering the first copy of C in Ls,t, the inequality in the last assertion implies that

there exists a prime π2 ∈ O satisfying
|π1|
R

< |π2| <
|π1|
r

and 0 < arg(π2) < ξ.

From this, it now follows that r <
∣∣∣π1
π2

∣∣∣ < R and ψ1 < arg
(π1
π2

)
< ψ2. �

7 Concluding remarks

A unifying thread through the proofs of the density theorems presented here is having a suitable
version of a prime number theorem around to permit us to establish the desired results. The
existence of such theorems is rather remarkable in itself and are key results belonging to both
analytic and algebraic number theory.

The curious reader may wonder whether there exist congruence class analogues for quotients
of primes in quadratic number rings other than Z[i]. This is indeed the case at least when these
are UFDs, and the reader is encouraged to find and state the appropriate versions of the prime
number theorem to establish these results; they can be found in [2], [8], and [12].

As for another open question, one can try to formulate and establish analogous density results
for the noncommutative ring of Hurwitz quaternions

H =
{
a+ bi+ cj + dk : a, b, c, d ∈ Z or a, b, c, d ∈ Z +

1

2

}
,

and try to prove that {π1π−12 : π1, π2 ∈ H are prime} is dense in H, the set of quaternions
over R.
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