József Sándor

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 23, 2017, Number 4, Pages 52—55

**Download full paper: PDF, 133 Kb**

## Details

### Authors and affiliations

József Sándor

* Department of Mathematics, Babeș-Bolyai University
Cluj-Napoca, Romania
*

### Abstract

As applications of the Hadamard integral inequality, we offer two inequalities for trigonometric, resp. hyperbolic functions. One of results gives a new proof of the Iyengar–Madhava Rao–Nanjundiah inequality for (sin *x* / *x*).

### Keywords

- BInequalities
- Trigonometric functions
- Hyperbolic functions
- Hadamard’s integral inequality
- Iyengar–Madhava Rao–Nanjundiah inequality
- Adamovic–Mitrinovic inequality

### AMS Classification

- 26D05
- 26D07
- 26D15
- 26D99

### References

- Iyengar, K. S. K., Madhava Rao, B. S., & Nanjundiah, T. S. (1945) Some trigonometrical inequalities, Half-Yearly J. Mysore Univ. Sect. B., NS, 6, 1–12.
- Mitrinovic, D. S. (1970) Analytic inequalities, Springer–Verlag, Berlin.
- Sándor, J. (2005) On the concavity of (sin
*x*/*x*) ; Octogon Math. Mag., 13(1), 406–407.

## Related papers

## Cite this paper

APASándor, J. (2017). Two Applications of the Hadamard Integral Inequality. Notes on Number Theory and Discrete Mathematics, 23(4), 52-55.

ChicagoSándor, József. “Two Applications of the Hadamard Integral Inequality.” Notes on Number Theory and Discrete Mathematics 23, no. 4 (2017): 52-55.

MLASándor, József. “Two applications of the Hadamard integral inequality.” Notes on Number Theory and Discrete Mathematics 23.4 (2017): 52-55. Print.