Two applications of the Hadamard integral inequality

József Sándor
Department of Mathematics, Babeş-Bolyai University
Kogălniceanu Str. 1, 400084 Cluj-Napoca, Romania

Abstract

As applications of the Hadamard integral inequality, we offer two inequalities for trigonometric, resp. hyperbolic functions. One of results gives a new proof of the IyengarMadhava Rao-Nanjundiah inequality for $\frac{\sin x}{x}$. Keywords: Inequalities, Trigonometric functions, Hyperbolic functions, Hadamard's integral inequality, Iyengar-Madhava Rao-Nanjundiah inequality, Adamović-Mitrinović inequality. AMS Classification: 26D05, 26D07, 26D15, 26D99.

1 Introduction

The famous Hadamard integral inequality states that for any continuous, convex function $f:[a, b] \rightarrow \mathbb{R}$ ($a<b$ real numbers), one has the inequality

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \geq f\left(\frac{a+b}{2}\right) . \tag{1}
\end{equation*}
$$

The inequality in (1) is strict, if f is a strictly convex function.
In 1945, K. S. K. Iyengar, B. S. Madhava Rao and T. S. Nanjundiah [1], in a little known paper, have shown that for any $x \in\left(0, \frac{\pi}{2}\right)$ one has

$$
\begin{equation*}
\frac{\sin x}{x}>\cos \left(\frac{x}{\sqrt{3}}\right) . \tag{2}
\end{equation*}
$$

We note, that, inequality (2) refines the better known, and also famous inequality by AdamovićMitrinović [2]:

$$
\begin{equation*}
\frac{\sin x}{x}>\sqrt[3]{\cos x} \tag{3}
\end{equation*}
$$

This follows by the inequality

$$
\begin{equation*}
\cos \left(\frac{x}{\sqrt{3}}\right)>\sqrt[3]{\cos x} \tag{4}
\end{equation*}
$$

In what follows, we will offer a new proof to inequality (2), as well as (4), and offer also the hyperbolic version of (2), namely: for any $x>0$ one has

$$
\begin{equation*}
\frac{\sinh x}{x}>\cosh \left(\frac{x}{\sqrt{3}}\right) . \tag{5}
\end{equation*}
$$

Our method will be based on Hadamard's inequality (1).

2 Main results

Theorem 2.1. Suppose that $\lambda>1, t>0$ and $\lambda t \in\left(0, \frac{\pi}{2}\right)$. Then

$$
\begin{equation*}
\cos t-\cos (\lambda t)<\frac{\lambda^{2}-1}{2} t \sin t \tag{6}
\end{equation*}
$$

Proof. Apply the Hadamard inequality (1) to $f(x)=-\sin x, a=t, b=\lambda t$. Then we get the relation

$$
\begin{equation*}
\frac{\cos t-\cos \lambda t}{t(\lambda-1)}<\sin \frac{t(\lambda+1)}{2} . \tag{7}
\end{equation*}
$$

Now, it is well-known (see e.g. [3]) that the function $u \rightarrow \frac{\sin u}{u}$ is strictly decreasing in $\left(0, \frac{\pi}{2}\right)$. This implies that for any $a>1, t>0$ one has $\frac{\sin t a}{t a}<\frac{\sin t}{t}$, implying

$$
\begin{equation*}
\sin t a<a \sin t \tag{8}
\end{equation*}
$$

Particularly, for $a=\frac{\lambda+1}{2}>1$ we get that $\sin \frac{t(\lambda+1)}{2}<\frac{\lambda+1}{2} \sin t$. Combining this with (7), relation (6) follows.

Particularly, for $\lambda=\sqrt{3}$ we get by (6):

$$
\begin{equation*}
\cos t-\cos (\sqrt{3} t)<t \sin t \tag{9}
\end{equation*}
$$

for $\sqrt{3} t \in\left(0, \frac{\pi}{2}\right)$.
The hyperbolic variant of (6) is contained in the following
Theorem 2.2. Let $\lambda>1$ and $t>0$. Then

$$
\begin{equation*}
\cosh (\lambda t)-\cosh t>\frac{\lambda^{2}-1}{2} t \sinh t . \tag{10}
\end{equation*}
$$

Proof. Apply (1) to $f(x)=\sinh x, a=t, b=\lambda t$. Remarking that the function $u \rightarrow \frac{\sinh u}{u}$ is strictly increasing for $u>0$, we get (10) as in the proof of (6).

Particularly, for $\lambda=\sqrt{3}$ we get by (10):

$$
\cosh (\sqrt{3} t)-\cosh t>t \sinh t
$$

for any $t>0$.
As an application of (9), we get:

Theorem 2.3.

$$
\begin{equation*}
\frac{\sin x}{x}>\cos \left(\frac{x}{\sqrt{3}}\right)>\sqrt[3]{\cos x} \tag{12}
\end{equation*}
$$

for $x \in\left(0, \frac{\pi}{2}\right)$.
Proof. Let $x=\sqrt{3} t \in\left(0, \frac{\pi}{2}\right)$, and introduce $g(t)=\sin (\sqrt{3} t)-\sqrt{3} t \cos t$. One has immediately $g^{\prime}(t)=\sqrt{3}(\cos \sqrt{3} t-\cos t+t \sin t)>0$ by (9). This gives $g(t)>g(0)=0$, and the first inequality of (12) follows.

For the second inequality, put $h(t)=\cos ^{3} t-\cos (\sqrt{3} t)$.
As $h^{\prime}(t)=\sqrt{3}\left[\sin (\sqrt{3} t)-\sqrt{3} \sin t \cos ^{2} t\right]>\sqrt{3} \cos t(t-\sin t \cos t)>0$ by $\sin t \cos t<$ $\sin t<t$. We have used the inequality $\sin (\sqrt{3} t)>\sqrt{3} t \cos t$, which follows by the first part of (12). By letting $t=\frac{x}{\sqrt{3}}$, the second inequality of (12) follows.

Theorem 2.4. For any $x>0$ one has

$$
\begin{equation*}
\frac{\sinh x}{x}>\cosh \frac{x}{\sqrt{3}} . \tag{1}
\end{equation*}
$$

Proof. Put $x=\sqrt{3} t$ and consider $k(t)=\sinh (\sqrt{3} t)-\sqrt{3} t \cosh t$. It is immediate that $k^{\prime}(t)=\sqrt{3}[\cosh (\sqrt{3} t)-\cosh t-t \sinh t]>0$ by (11). This implies $k(t)>k(0)=0$, and inequality (13) is established.

Remark 1. It can be proved by other methods that, inequality (13) refines the famous Lazarević inequality (see [2])

$$
\begin{equation*}
\frac{\sinh x}{x}>\sqrt[3]{\cosh x}, x>0 \tag{14}
\end{equation*}
$$

It should be shown that

$$
\begin{equation*}
\cosh \frac{x}{\sqrt{3}}>\sqrt[3]{\cosh x} \tag{15}
\end{equation*}
$$

for $x>0$. Indeed, put $x=\sqrt{3} t$. As (15) is equivalent with $\cosh ^{3} t>\cosh (\sqrt{3} t)$, remark that by the identity $\cosh ^{3} t=\frac{\cosh (3 t)+3 \cosh t}{4}$, we have to show that

$$
\begin{equation*}
\cosh (3 t)+3 \cosh t>4 \cosh (\sqrt{3} t) \tag{16}
\end{equation*}
$$

By using the series expansion $\cosh x=1+\frac{x^{2}}{2}+\frac{x^{4}}{24}+\frac{x^{6}}{720}+\cdots$, it is immediate that the left side of (16) is $t^{2} \cdot \frac{12}{2}+t^{4}\left(\frac{3^{4}+3}{24}\right)+t^{6}\left(\frac{3^{6}+3}{720}\right)+\cdots$, while right side is $t^{2} \cdot \frac{12}{2}+t^{4} \frac{4 \cdot 3^{2}}{24}+$ $t^{6}\left(\frac{4 \cdot 3^{3}}{720}\right)+\cdots$, so it is sufficient to prove that $3^{4}+3>4 \cdot 3^{2}, 3^{6}+3>4 \cdot 3^{3}, \ldots$ and generally

$$
\begin{equation*}
3^{2 n+2}+3>4 \cdot 3^{n+1}, n \geq 1 \tag{17}
\end{equation*}
$$

which easily follows by mathematical induction.

References

[1] Iyengar, K. S. K., Madhava Rao, B. S., \& Nanjundiah, T. S. (1945) Some trigonometrical inequalities, Half-Yearly J. Mysore Univ. Sect. B., NS, 6, 1-12.
[2] Mitrinović, D. S. (1970) Analytic inequalities, Springer-Verlag, Berlin.
[3] Sándor, J. (2005) On the concavity of $\frac{\sin x}{x}$, Octogon Math. Mag., 13(1), 406-407.

