Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 23, 2017, No. 4, 52–55

Two applications of the Hadamard integral inequality

József Sándor

Department of Mathematics, Babeş–Bolyai University Kogălniceanu Str. 1, 400084 Cluj-Napoca, Romania

Received: 21 September 2016

Accepted: 29 October 2017

Abstract: As applications of the Hadamard integral inequality, we offer two inequalities for trigonometric, resp. hyperbolic functions. One of results gives a new proof of the Iyengar–Madhava Rao–Nanjundiah inequality for $\frac{\sin x}{x}$.

Keywords: Inequalities, Trigonometric functions, Hyperbolic functions, Hadamard's integral inequality, Iyengar–Madhava Rao–Nanjundiah inequality, Adamović–Mitrinović inequality. **AMS Classification:** 26D05, 26D07, 26D15, 26D99.

1 Introduction

The famous Hadamard integral inequality states that for any continuous, convex function $f:[a,b] \to \mathbb{R}$ (a < b real numbers), one has the inequality

$$\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x \ge f\left(\frac{a+b}{2}\right). \tag{1}$$

The inequality in (1) is strict, if f is a strictly convex function.

In 1945, K. S. K. Iyengar, B. S. Madhava Rao and T. S. Nanjundiah [1], in a little known paper, have shown that for any $x \in (0, \frac{\pi}{2})$ one has

$$\frac{\sin x}{x} > \cos\left(\frac{x}{\sqrt{3}}\right). \tag{2}$$

We note, that, inequality (2) refines the better known, and also famous inequality by Adamović– Mitrinović [2]:

$$\frac{\sin x}{x} > \sqrt[3]{\cos x}.$$
(3)

This follows by the inequality

$$\cos\left(\frac{x}{\sqrt{3}}\right) > \sqrt[3]{\cos x}.\tag{4}$$

In what follows, we will offer a new proof to inequality (2), as well as (4), and offer also the hyperbolic version of (2), namely: for any x > 0 one has

$$\frac{\sinh x}{x} > \cosh\left(\frac{x}{\sqrt{3}}\right). \tag{5}$$

Our method will be based on Hadamard's inequality (1).

2 Main results

Theorem 2.1. Suppose that $\lambda > 1, t > 0$ and $\lambda t \in \left(0, \frac{\pi}{2}\right)$. Then

$$\cos t - \cos(\lambda t) < \frac{\lambda^2 - 1}{2} t \sin t.$$
(6)

Proof. Apply the Hadamard inequality (1) to $f(x) = -\sin x$, $a = t, b = \lambda t$. Then we get the relation

$$\frac{\cos t - \cos \lambda t}{t(\lambda - 1)} < \sin \frac{t(\lambda + 1)}{2}.$$
(7)

Now, it is well-known (see e.g. [3]) that the function $u \to \frac{\sin u}{u}$ is strictly decreasing in $\left(0, \frac{\pi}{2}\right)$. This implies that for any a > 1, t > 0 one has $\frac{\sin ta}{ta} < \frac{\sin t}{t}$, implying

$$\sin ta < a \sin t. \tag{8}$$

Particularly, for $a = \frac{\lambda + 1}{2} > 1$ we get that $\sin \frac{t(\lambda + 1)}{2} < \frac{\lambda + 1}{2} \sin t$. Combining this with (7), relation (6) follows.

Particularly, for $\lambda = \sqrt{3}$ we get by (6):

$$\cos t - \cos(\sqrt{3}t) < t\sin t \tag{9}$$

for $\sqrt{3}t \in \left(0, \frac{\pi}{2}\right)$.

The hyperbolic variant of (6) is contained in the following

Theorem 2.2. Let $\lambda > 1$ and t > 0. Then

$$\cosh(\lambda t) - \cosh t > \frac{\lambda^2 - 1}{2} t \sinh t.$$
(10)

Proof. Apply (1) to $f(x) = \sinh x, a = t, b = \lambda t$. Remarking that the function $u \to \frac{\sinh u}{u}$ is strictly increasing for u > 0, we get (10) as in the proof of (6).

Particularly, for $\lambda = \sqrt{3}$ we get by (10):

$$\cosh(\sqrt{3t}) - \cosh t > t \sinh t,\tag{11}$$

for any t > 0.

As an application of (9), we get:

Theorem 2.3.

$$\frac{\sin x}{x} > \cos\left(\frac{x}{\sqrt{3}}\right) > \sqrt[3]{\cos x} \tag{12}$$

for $x \in (0, \frac{\pi}{2})$.

Proof. Let $x = \sqrt{3}t \in (0, \frac{\pi}{2})$, and introduce $g(t) = \sin(\sqrt{3}t) - \sqrt{3}t \cos t$. One has immediately $g'(t) = \sqrt{3}(\cos\sqrt{3}t - \cos t + t \sin t) > 0$ by (9). This gives g(t) > g(0) = 0, and the first inequality of (12) follows.

For the second inequality, put $h(t) = \cos^3 t - \cos(\sqrt{3}t)$.

As $h'(t) = \sqrt{3}[\sin(\sqrt{3}t) - \sqrt{3}\sin t\cos^2 t] > \sqrt{3}\cos t(t - \sin t\cos t) > 0$ by $\sin t\cos t < \sin t < t$. We have used the inequality $\sin(\sqrt{3}t) > \sqrt{3}t\cos t$, which follows by the first part of (12). By letting $t = \frac{x}{\sqrt{3}}$, the second inequality of (12) follows.

Theorem 2.4. For any x > 0 one has

$$\frac{\sinh x}{x} > \cosh \frac{x}{\sqrt{3}}.$$
(13)

Proof. Put $x = \sqrt{3}t$ and consider $k(t) = \sinh(\sqrt{3}t) - \sqrt{3}t \cosh t$. It is immediate that $k'(t) = \sqrt{3}[\cosh(\sqrt{3}t) - \cosh t - t \sinh t] > 0$ by (11). This implies k(t) > k(0) = 0, and inequality (13) is established.

Remark 1. It can be proved by other methods that, inequality (13) refines the famous Lazarević inequality (see [2])

$$\frac{\sinh x}{x} > \sqrt[3]{\cosh x}, x > 0.$$
(14)

It should be shown that

$$\cosh\frac{x}{\sqrt{3}} > \sqrt[3]{\cosh x} \tag{15}$$

for x > 0. Indeed, put $x = \sqrt{3}t$. As (15) is equivalent with $\cosh^3 t > \cosh(\sqrt{3}t)$, remark that by the identity $\cosh^3 t = \frac{\cosh(3t) + 3\cosh t}{4}$, we have to show that

$$\cosh(3t) + 3\cosh t > 4\cosh(\sqrt{3}t). \tag{16}$$

By using the series expansion $\cosh x = 1 + \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + \cdots$, it is immediate that the left side of (16) is $t^2 \cdot \frac{12}{2} + t^4 \left(\frac{3^4+3}{24}\right) + t^6 \left(\frac{3^6+3}{720}\right) + \cdots$, while right side is $t^2 \cdot \frac{12}{2} + t^4 \frac{4 \cdot 3^2}{24} + t^6 \left(\frac{4 \cdot 3^3}{720}\right) + \cdots$, so it is sufficient to prove that $3^4 + 3 > 4 \cdot 3^2$, $3^6 + 3 > 4 \cdot 3^3$, ... and generally

$$3^{2n+2} + 3 > 4 \cdot 3^{n+1}, n \ge 1, \tag{17}$$

which easily follows by mathematical induction.

References

- [1] Iyengar, K. S. K., Madhava Rao, B. S., & Nanjundiah, T. S. (1945) Some trigonometrical inequalities, *Half-Yearly J. Mysore Univ. Sect. B., NS*, 6, 1–12.
- [2] Mitrinović, D. S. (1970) Analytic inequalities, Springer-Verlag, Berlin.
- [3] Sándor, J. (2005) On the concavity of $\frac{\sin x}{x}$, Octogon Math. Mag., 13(1), 406–407.