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Two applications
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Abstract: As applications of the Hadamard integral inequality, we offer two inequalities for
trigonometric, resp. hyperbolic functions. One of results gives a new proof of the Iyengar—
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1 Introduction

The famous Hadamard integral inequality states that for any continuous, convex function
f :]a,b] = R (a < breal numbers), one has the inequality

b
ﬁ/ﬂ flx)dx > f (a—;b) . (D

The inequality in (1) is strict, if f is a strictly convex function.
In 1945, K. S. K. Iyengar, B. S. Madhava Rao and T. S. Nanjundiah [1], in a little known
paper, have shown that for any = € (0, 5) one has

sinx T
— . 2
. > CoS <\/§) )

We note, that, inequality (2) refines the better known, and also famous inequality by Adamovi¢—
Mitrinovié [2]:

sin x

> v/cos . 3)
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This follows by the inequality

CoS (%) > Jcos . 4)

In what follows, we will offer a new proof to inequality (2), as well as (4), and offer also the
hyperbolic version of (2), namely: for any x > 0 one has

sinh x x
h{—]). 5
- > cos ( \/3) &)

Our method will be based on Hadamard’s inequality (1).

2 Main results

Theorem 2.1. Suppose that A > 1,t > 0 and A\t € (O, %) . Then

2

cost — cos(At) < tsint. (6)

Proof. Apply the Hadamard inequality (1) to f(x) = —sinxz,a = t,b = At. Then we get the

relation \ A+ D)
cost — cos A\t t(A+
_— in ——=. 7
1= 1) < sin 5 )

Now, it is well-known (see e.g. [3]) that the function ©v — Sy

is strictly decreasing in

sinta  sint )
< ——, implying
ta t

(0, %) . This implies that for any a > 1,¢ > 0 one has

sinta < asint. 8)

A+1 t(A+1 A+1
Particularly, for a = At > 1 we get that sin (A+1) < i sin t. Combining this with

(7), relation (6) follows. [l

Particularly, for A = V3 we get by (6):
cost — cos(V/3t) < tsint )

for /3t € (0, %) .
The hyperbolic variant of (6) is contained in the following

Theorem 2.2. Let A > 1 andt > 0. Then

2

cosh(At) — cosht > tsinht. (10)
. . ) sinhwu .
Proof. Apply (1) to f(x) = sinhx,a = t,b = At. Remarking that the function v — is
u
strictly increasing for v > 0, we get (10) as in the proof of (6). O
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Particularly, for A = v/3 we get by (10):
cosh(\/§t) — cosht > tsinht, (11)

for any ¢ > 0.
As an application of (9), we get:

Theorem 2.3.

sinx T
>cos | — | > Jcoszx 12
7 (\/5) (12

forx € (0, g)

Proof. Letx = /3t € (0,2), and introduce g(¢) = sin(v/3t) — v/3t cost. One has immediately
g'(t) = V/3(cos /3t — cost + tsint) > 0 by (9). This gives g(t) > g(0) = 0, and the first
inequality of (12) follows.

For the second inequality, put 2 (t) = cos®t — cos(v/3t).

As W(t) = /3[sin(v/3t) — V/3sintcos?t] > v/3cost(t —sintcost) > 0 by sintcost <
sint < t. We have used the inequality sin(v/3t) > /3t cost, which follows by the first part of
(12). By letting t = i, the second inequality of (12) follows. ]

V3

Theorem 2.4. For any x > 0 one has

inh
ST > coshi. (13)

x V3
Proof. Put x = /3t and consider k(t) = sinh(v/3t) — v/3tcosht. It is immediate that
k'(t) = v/3[cosh(v/3t) — cosht — tsinht] > 0 by (11). This implies k(t) > k(0) = 0, and
inequality (13) is established. []

Remark 1. It can be proved by other methods that, inequality (13) refines the famous Lazarevié

inequality (see [2])
sinh x

> Veoshz,z > 0. (14)
T
It should be shown that
X 3
cosh — > V/cosh z 15
73 (15)

for x > 0. Indeed, put x = \/3t. As (15) is equivalent with cosh®t > COSh(\/gt), remark that by
cosh(3t) + 3 cosht

the identity cosh®t = , we have to show that

4
cosh(3t) + 3 cosht > 4 cosh(v/3t). (16)
2 g4 6
By using the series expansion coshx = 1+ 5 + o1 + 20 + -, itis immediate that the left
12 31 +3 3¢ +3 12 4 - 3
side of (16) is t2 - 7—|—t4 <2—Z> 410 ( 7;; ) + -+, while right side is t* - 5 4t Y +

.23
t° ( 720 ) + -+, so it is sufficient to prove that 3*+3 > 4-32 3°+3 > 4.3 ... and generally

322 13> 4.3 pn>1, (17)

which easily follows by mathematical induction.
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