
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Vol. 23, 2017, No. 4, 52–55

Two applications
of the Hadamard integral inequality
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Abstract: As applications of the Hadamard integral inequality, we offer two inequalities for
trigonometric, resp. hyperbolic functions. One of results gives a new proof of the Iyengar–
Madhava Rao–Nanjundiah inequality for sinx

x
.
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1 Introduction

The famous Hadamard integral inequality states that for any continuous, convex function
f : [a, b]→ R (a < b real numbers), one has the inequality

1

b− a

∫ b

a

f(x)dx ≥ f

(
a+ b

2

)
. (1)

The inequality in (1) is strict, if f is a strictly convex function.
In 1945, K. S. K. Iyengar, B. S. Madhava Rao and T. S. Nanjundiah [1], in a little known

paper, have shown that for any x ∈
(
0, π

2

)
one has

sinx

x
> cos

(
x√
3

)
. (2)

We note, that, inequality (2) refines the better known, and also famous inequality by Adamović–
Mitrinović [2]:

sinx

x
> 3
√
cosx. (3)
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This follows by the inequality

cos

(
x√
3

)
> 3
√
cosx. (4)

In what follows, we will offer a new proof to inequality (2), as well as (4), and offer also the
hyperbolic version of (2), namely: for any x > 0 one has

sinhx

x
> cosh

(
x√
3

)
. (5)

Our method will be based on Hadamard’s inequality (1).

2 Main results

Theorem 2.1. Suppose that λ > 1, t > 0 and λt ∈
(
0, π

2

)
. Then

cos t− cos(λt) <
λ2 − 1

2
t sin t. (6)

Proof. Apply the Hadamard inequality (1) to f(x) = − sinx, a = t, b = λt. Then we get the
relation

cos t− cosλt

t(λ− 1)
< sin

t(λ+ 1)

2
. (7)

Now, it is well-known (see e.g. [3]) that the function u → sinu

u
is strictly decreasing in(

0, π
2

)
. This implies that for any a > 1, t > 0 one has

sin ta

ta
<

sin t

t
, implying

sin ta < a sin t. (8)

Particularly, for a =
λ+ 1

2
> 1 we get that sin

t(λ+ 1)

2
<
λ+ 1

2
sin t. Combining this with

(7), relation (6) follows.

Particularly, for λ =
√
3 we get by (6):

cos t− cos(
√
3t) < t sin t (9)

for
√
3t ∈

(
0, π

2

)
.

The hyperbolic variant of (6) is contained in the following

Theorem 2.2. Let λ > 1 and t > 0. Then

cosh(λt)− cosh t >
λ2 − 1

2
t sinh t. (10)

Proof. Apply (1) to f(x) = sinhx, a = t, b = λt. Remarking that the function u → sinhu

u
is

strictly increasing for u > 0, we get (10) as in the proof of (6).
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Particularly, for λ =
√
3 we get by (10):

cosh(
√
3t)− cosh t > t sinh t, (11)

for any t > 0.

As an application of (9), we get:

Theorem 2.3.
sinx

x
> cos

(
x√
3

)
> 3
√
cosx (12)

for x ∈
(
0, π

2

)
.

Proof. Let x =
√
3t ∈

(
0, π

2

)
, and introduce g(t) = sin(

√
3t)−

√
3t cos t. One has immediately

g′(t) =
√
3(cos

√
3t − cos t + t sin t) > 0 by (9). This gives g(t) > g(0) = 0, and the first

inequality of (12) follows.
For the second inequality, put h(t) = cos3 t− cos(

√
3t).

As h′(t) =
√
3[sin(

√
3t) −

√
3 sin t cos2 t] >

√
3 cos t(t − sin t cos t) > 0 by sin t cos t <

sin t < t. We have used the inequality sin(
√
3t) >

√
3t cos t, which follows by the first part of

(12). By letting t =
x√
3
, the second inequality of (12) follows.

Theorem 2.4. For any x > 0 one has

sinhx

x
> cosh

x√
3
. (13)

Proof. Put x =
√
3t and consider k(t) = sinh(

√
3t) −

√
3t cosh t. It is immediate that

k′(t) =
√
3[cosh(

√
3t) − cosh t − t sinh t] > 0 by (11). This implies k(t) > k(0) = 0, and

inequality (13) is established.

Remark 1. It can be proved by other methods that, inequality (13) refines the famous Lazarević
inequality (see [2])

sinhx

x
>

3
√
coshx, x > 0. (14)

It should be shown that
cosh

x√
3
>

3
√
coshx (15)

for x > 0. Indeed, put x =
√
3t. As (15) is equivalent with cosh3 t > cosh(

√
3t), remark that by

the identity cosh3 t =
cosh(3t) + 3 cosh t

4
, we have to show that

cosh(3t) + 3 cosh t > 4 cosh(
√
3t). (16)

By using the series expansion coshx = 1+
x2

2
+
x4

24
+
x6

720
+ · · · , it is immediate that the left

side of (16) is t2 · 12
2
+ t4

(
34 + 3

24

)
+ t6

(
36 + 3

720

)
+ · · · , while right side is t2 · 12

2
+ t4

4 · 32

24
+

t6
(
4 · 33

720

)
+ · · · , so it is sufficient to prove that 34+3 > 4 ·32, 36+3 > 4 ·33, . . . and generally

32n+2 + 3 > 4 · 3n+1, n ≥ 1, (17)

which easily follows by mathematical induction.
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