József Sándor

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 23, 2017, Number 2, Pages 81—83

**Download full paper: PDF, 141 Kb**

## Details

### Authors and affiliations

József Sándor

*Babes-Bolyai University, Department of Mathematics
Cluj-Napoca, Romania
*

### Abstract

We offer extensions of D’Aurizio’s trigonometric inequality, as well to its counterpart, proved in [1] and [2].

### Keywords

- Inequalities
- Trigonometric functions
- D’Aurizio’s inequality

### AMS Classification

- 26D15
- 26D99

### References

- D’Aurizio, J. (2014) Refinements of the Shafer–Fink inequality of arbitrary precision, Math. Ineq. Appl., 17(4), 1487–1498.
- Sándor, J. (2013) On new refinements of Kober’s and Jordan’s inequalities, Notes Number Theory Discr. Math. 19(1), 73–83
- Sándor, J. (2016) On D’Aurizio’s trigonometric inequality, J. Math. Ineq., 10(3), 885–888

## Related papers

## Cite this paper

APASándor, J. (2017). Extensions of D’Aurizio’s trigonometric inequality. Notes on Number Theory and Discrete Mathematics, 23(2), 81-83.

ChicagoSándor, József. “Extensions of D’Aurizio’s Trigonometric Inequality.” Notes on Number Theory and Discrete Mathematics 23, no. 2 (2017): 81-83.

MLASándor, József . “Extensions of D’Aurizio’s Trigonometric Inequality.” Notes on Number Theory and Discrete Mathematics 23.2 (2017): 81-83. Print.