# Extensions of D'Aurizio's trigonometric inequality 

József Sándor<br>Babes-Bolyai University, Department of Mathematics<br>Cluj-Napoca, Romania<br>e-mail: jsandor@math.ubbcluj.ro

Received: 15 October 2016
Accepted: 31 March 2017

Abstract: We offer extensions of D'Aurizio's trigonometric inequality, as well to its counterpart, proved in [1] and [2].
Keywords: Inequalities, Trigonometric functions, D'Aurizio's inequality.
AMS Classification: 26D15, 26D99.

## 1 Introduction

D'Aurizio's trigonometric inequality states that (see [1,3]) for any $x \in\left(0, \frac{\pi}{2}\right)$ one has

$$
\begin{equation*}
\frac{1-\frac{\cos x}{\cos \left(\frac{x}{2}\right)}}{x^{2}}<\frac{4}{\pi^{2}} \tag{1}
\end{equation*}
$$

D'Aurizio's proof was based on certain infinite product expansions, as well as inequalities on infinite series and Riemann's zeta function. The author ([3]) has obtained a new proof, by applying known trigonometric inequalities and an auxiliary function. The method implied also the following counterpart to (1):

$$
\begin{equation*}
\frac{3}{8}<\frac{1-\frac{\cos x}{\cos \left(\frac{x}{2}\right)}}{x^{2}} \tag{2}
\end{equation*}
$$

for any $x \in\left(0, \frac{\pi}{2}\right)$.
Our aim in what follows is to extend inequalities (1) and (2) for any positive integer $n$, in place of 2 .

For example, for $n=3$ we have the following double inequality:

$$
\begin{equation*}
\frac{4}{\pi^{2}}<\frac{1-\frac{\cos x}{\cos \left(\frac{x}{3}\right)}}{x^{2}}<\frac{4}{9} . \tag{3}
\end{equation*}
$$

## 2 Main results

The following extensions of inequalities (1)-(3) will be proved.
Theorem 1. For any $x \in\left(0, \frac{\pi}{2}\right)$ and all positive integers $n \geq 3$, one has

$$
\begin{equation*}
\frac{4}{\pi^{2}}<\frac{1-\frac{\cos x}{\cos \left(\frac{x}{n}\right)}}{x^{2}}<\frac{n^{2}-1}{2 n^{2}} . \tag{4}
\end{equation*}
$$

Proof. As in [3], let $x=n t$, where

$$
f(x)=\frac{1-\frac{\cos x}{\cos \left(\frac{x}{n}\right)}}{x^{2}}
$$

Put

$$
g(t)=\frac{\cos t-\cos n t}{t^{2} \cos t}
$$

so clearly

$$
g(t)=n^{2} \cdot f(n t)
$$

In order to study the monotonicity of function $f(x)$ upon $x$, it will be sufficient to consider the monotonicity of $g(t)$ upon $t=\frac{x}{n} \in\left(0, \frac{\pi}{2 n}\right)$. It was shown in [3] that for $n=2, g(t)$ is strictly increasing. Now let us see the case $n=3$. In this case one has

$$
g(t)=\frac{\cos t-4(\cos t)^{3}+3 \cos t}{t^{2} \cos t}=4 \frac{1-(\cos t)^{2}}{t^{2}}=4\left(\frac{\sin t}{t}\right)^{2} .
$$

As the function $s(t)=\frac{\sin t}{t}$ is known to be strictly decreasing on $\left(0, \frac{\pi}{2}\right)$ (see e.g. [2]), it will be strictly decreasing also on $\left(0, \frac{\pi}{4}\right)$, so we get that for $n=3$, the function $g(t)$ introduced above is strictly decreasing, contrary to the case $n=2$. This implies immediately inequalities (3).

Now, we shall prove that, in the general case, for any $n \geq 3, g(t)$ is strictly decreasing function. First computing the derivative of function $g(t)$, one obtains

$$
\begin{equation*}
\left(t^{3}\right) \cdot g^{\prime}(t)=\frac{2 \cos n t \cdot \cos t-2(\cos t)^{2}+n t \cdot \sin n t \cdot \cos t-t \cos n t \cdot \sin t}{(\cos t)^{2}}=h(t) \tag{5}
\end{equation*}
$$

In order to prove that $g^{\prime}(t)<0$, it will be sufficient to show that $h(t)<0$. One has $h(0)=0$, so it will be enough to prove that $h^{\prime}(t)<0$. By using (5), and the classical addition formulae

$$
\begin{aligned}
& \sin (a+b)=\sin a \cdot \cos b+\cos a \cdot \sin b, \\
& \sin (a-b)=\sin a \cdot \cos b-\cos a \cdot \sin b,
\end{aligned}
$$

after some quite long and elementary computations (which we omit here), the following can be deduced: $h^{\prime}(0)=0$ and for the second derivative of $h$ one has:

$$
\left[8 n^{2} \cdot(\cos t)^{4}\right] \cdot h^{\prime \prime}(t)
$$

$$
\begin{equation*}
=-\left[(n+1)^{3} \cdot \sin (n-3) t+(n-1)^{3} \cdot \sin (n+3) t+A(n) \cdot \sin (n-1) t+B(n) \cdot \sin (n+1) t\right], \tag{6}
\end{equation*}
$$

where

$$
A(n)=3 n^{3}+3 n^{2}-15 n-23
$$

and

$$
B(n)=3 n^{3}-3 n^{2}-15 n+23
$$

Now, remark that $A(n)=3 n\left(n^{2}-5\right)+3 n^{2}-23>0$, as for $n \geq 3$ we get $n^{2}-5 \geq 4>0$ and $3 n^{3}-23 \geq 4>0$. Similarly, $B(n)=3 n\left(n^{2}-n-5\right)+23$, with $n^{2}-n-5=n(n-1)-5 \geq$ $6-5=1$, so we get $B(n)>0$ again.

As $(n-1) t$ is in $\left(0, \frac{n-1}{n} \frac{\pi}{2}\right)$, which is in $\left(0, \frac{\pi}{2}\right)$, and similarly for $(n-3) t$ for $n>3$ (for $n=3$, one has $(n-3) t=0$ ), by relation (6) we get that $h^{\prime \prime}(t)<0$. This implies $h^{\prime}(t)<h^{\prime}(0)=0$, so that $h(t)<h(0)=0$, giving that $g(t)$ is strictly decreasing. Thus the function $f$ is strictly decreasing, too. Finally, inequalities (4) are consequences of the monotonicity of $f$, implying: $f\left(\frac{\pi}{2}-\right)<f(x)<f(0+)$, and using the L'Hópital rule.

Remark 1. As it is well-known that $\cos (n t)=T_{n}(\cos t)$, where $T_{n}$ are the classical Chebyshev polynomials, we get from the above proved results, that the fraction $\cos t-\frac{T_{n}(\cos t)}{t^{2} \cos t}$ is a strictly decreasing function of $t$ for any $n \geq 3$, while for $n=2$ it is strictly increasing.

Conjecture 1. We conjecture that, the above function $g(t)$ is strictly decreasing for any real number $n \geq 3$.

## References

[1] D'Aurizio, J. (2014) Refinements of the Shafer-Fink inequality of arbitrary precision, Math. Ineq. Appl., 17(4), 1487-1498.
[2] Sándor, J. (2013) On new refinements of Kober's and Jordan's inequalities, Notes Number Theory Discr. Math. 19(1), 73-83.
[3] Sándor, J. (2016) On D'Aurizio’s trigonometric inequality, J. Math. Ineq., 10(3), 885-888.

