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Abstract: We offer extensions of D’Aurizio’s trigonometric inequality, as well to its counter-
part, proved in [1] and [2].
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1 Introduction

D’ Aurizio’s trigonometric inequality states that (see [1, 3]) for any z € (0, 7) one has
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D’ Aurizio’s proof was based on certain infinite product expansions, as well as inequalities

on infinite series and Riemann’s zeta function. The author ([3]) has obtained a new proof, by

applying known trigonometric inequalities and an auxiliary function. The method implied also
the following counterpart to (1):
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for any = € (0, %).
Our aim in what follows is to extend inequalities (1) and (2) for any positive integer n , in
place of 2.
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For example, for n = 3 we have the following double inequality:

4 1-n 4
—_ < —3 < -, 3
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2 Main results
The following extensions of inequalities (1)—(3) will be proved.
Theorem 1. For any x € (0, §) and all positive integers n > 3, one has
4 l-m et
= n . 4
2 < x? < 2n? @)

Proof. Asin [3], let x = nt, where
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fla) = —5
Put
(t) B cost — cosnt
I = e ost
so clearly

g(t) =n?.f(nt).
In order to study the monotonicity of function f(x) upon z, it will be sufficient to consider the
monotonicity of g(t) upont = = € (0, 5-). It was shown in [3] that for n = 2, g(t) is strictly
increasing. Now let us see the case n = 3. In this case one has

ot) = cost — 4(cost)® + 3cost _ 41 — (cost)? 4 sint ) ? .
2 cost 12 t
As the function s(t) = *2¢ is known to be strictly decreasing on (0, Z) (see e.g. [2]), it will be

strictly decreasing also on (0, §), so we get that for n = 3, the function g(t) introduced above is
strictly decreasing, contrary to the case n = 2. This implies immediately inequalities (3).

Now, we shall prove that, in the general case, for any n > 3, ¢(t) is strictly decreasing
function. First computing the derivative of function ¢(t), one obtains

2 cosnt.cost — 2(cost)? + nt.sinnt. cost — t cosnt.sint
(t%).9'(t) = (cos?) =ht). (5

(cost)?

In order to prove that ¢/(t) < 0, it will be sufficient to show that A(¢) < 0. One has h(0) = 0,
so it will be enough to prove that '(¢) < 0. By using (5), and the classical addition formulae

sin(a + b) = sina. cosb + cos a. sin b,

sin(a — b) = sina. cosb — cos a. sin b,

after some quite long and elementary computations (which we omit here), the following can be
deduced: A/(0) = 0 and for the second derivative of / one has:

[8n?.(cost)*].n" (t)

82



= —[(n+ 1) sin(n — 3)t+ (n — 1)*.sin(n + 3)t + A(n).sin(n — 1)t + B(n).sin(n + 1)t], (6)

where
A(n) = 3n> + 3n® — 15n — 23

and
B(n) = 3n® — 3n* — 15n + 23.

Now, remark that A(n) = 3n(n? —5) +3n*> — 23 > 0,asforn > 3we getn? —5>4 >0
and 3n3 —23 > 4 > 0. Similarly, B(n) = 3n(n®>—n—5)+23, withn’—n—-5=n(n—1)—5 >
6 —5 =1, soweget B(n) > 0 again.

As (n—1)tisin (0, 2=+%), which is in (0, %), and similarly for (n — 3)t for n > 3 (forn = 3,
one has (n — 3)t = 0), by relation (6) we get that h”(¢t) < 0. This implies /() < h'(0) = 0,
so that h(t) < h(0) = 0, giving that g(t) is strictly decreasing. Thus the function f is strictly
decreasing, too. Finally, inequalities (4) are consequences of the monotonicity of f, implying:
f(5—) < f(z) < f(0+), and using the L’Hépital rule. O

Remark 1. As it is well-known that cos(nt) = T,,(cost), where T,, are the classical Chebyshev
Ty (cost)

polynomials, we get from the above proved results, that the fraction cost — = ——

is a strictly
decreasing function of t for any n > 3, while for n = 2 it is strictly increasing.

Conjecture 1. We conjecture that, the above function ¢(t) is strictly decreasing for any real
number n > 3.
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