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1 Introduction

D’Aurizio’s trigonometric inequality states that (see [1, 3]) for any x ∈ (0, π
2
) one has

1− cosx
cos(x

2
)

x2
<

4

π2
. (1)

D’Aurizio’s proof was based on certain infinite product expansions, as well as inequalities
on infinite series and Riemann’s zeta function. The author ([3]) has obtained a new proof, by
applying known trigonometric inequalities and an auxiliary function. The method implied also
the following counterpart to (1):

3

8
<

1− cosx
cos(x

2
)

x2
(2)

for any x ∈ (0, π
2
).

Our aim in what follows is to extend inequalities (1) and (2) for any positive integer n , in
place of 2.
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For example, for n = 3 we have the following double inequality:
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)
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9
. (3)

2 Main results

The following extensions of inequalities (1)–(3) will be proved.

Theorem 1. For any x ∈ (0, π
2
) and all positive integers n ≥ 3, one has

4

π2
<

1− cosx
cos( x

n
)

x2
<
n2 − 1

2n2
. (4)

Proof. As in [3], let x = nt, where

f(x) =
1− cosx

cos( x
n
)

x2
.

Put
g(t) =

cos t− cosnt

t2 cos t
,

so clearly
g(t) = n2.f(nt).

In order to study the monotonicity of function f(x) upon x, it will be sufficient to consider the
monotonicity of g(t) upon t = x

n
∈ (0, π

2n
). It was shown in [3] that for n = 2, g(t) is strictly

increasing. Now let us see the case n = 3. In this case one has

g(t) =
cos t− 4(cos t)3 + 3 cos t

t2 cos t
= 4

1− (cos t)2

t2
= 4

(
sin t

t

)2

.

As the function s(t) = sin t
t

is known to be strictly decreasing on (0, π
2
) (see e.g. [2]), it will be

strictly decreasing also on (0, π
4
), so we get that for n = 3, the function g(t) introduced above is

strictly decreasing, contrary to the case n = 2. This implies immediately inequalities (3).
Now, we shall prove that, in the general case, for any n ≥ 3, g(t) is strictly decreasing

function. First computing the derivative of function g(t), one obtains

(t3).g′(t) =
2 cosnt. cos t− 2(cos t)2 + nt. sinnt. cos t− t cosnt. sin t

(cos t)2
= h(t). (5)

In order to prove that g′(t) < 0, it will be sufficient to show that h(t) < 0. One has h(0) = 0,
so it will be enough to prove that h′(t) < 0. By using (5), and the classical addition formulae

sin(a+ b) = sin a. cos b+ cos a. sin b,

sin(a− b) = sin a. cos b− cos a. sin b,

after some quite long and elementary computations (which we omit here), the following can be
deduced: h′(0) = 0 and for the second derivative of h one has:

[8n2.(cos t)4].h′′(t)
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= −[(n+1)3. sin(n− 3)t+(n− 1)3. sin(n+3)t+A(n). sin(n− 1)t+B(n). sin(n+1)t], (6)

where
A(n) = 3n3 + 3n2 − 15n− 23

and
B(n) = 3n3 − 3n2 − 15n+ 23.

Now, remark that A(n) = 3n(n2 − 5) + 3n2 − 23 > 0, as for n ≥ 3 we get n2 − 5 ≥ 4 > 0

and 3n3−23 ≥ 4 > 0. Similarly, B(n) = 3n(n2−n−5)+23, with n2−n−5 = n(n−1)−5 ≥
6− 5 = 1, so we get B(n) > 0 again.

As (n−1)t is in (0, n−1
n

π
2
), which is in (0, π

2
), and similarly for (n−3)t for n > 3 (for n = 3,

one has (n − 3)t = 0), by relation (6) we get that h′′(t) < 0. This implies h′(t) < h′(0) = 0,
so that h(t) < h(0) = 0, giving that g(t) is strictly decreasing. Thus the function f is strictly
decreasing, too. Finally, inequalities (4) are consequences of the monotonicity of f , implying:
f(π

2
−) < f(x) < f(0+), and using the L’Hópital rule.

Remark 1. As it is well-known that cos(nt) = Tn(cos t), where Tn are the classical Chebyshev
polynomials, we get from the above proved results, that the fraction cos t − Tn(cos t)

t2 cos t
is a strictly

decreasing function of t for any n ≥ 3, while for n = 2 it is strictly increasing.

Conjecture 1. We conjecture that, the above function g(t) is strictly decreasing for any real
number n ≥ 3.
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