Fast converging series for zeta numbers in terms of polynomial representations of Bernoulli numbers

J. Braun, D. Romberger and H. J. Bentz
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 23, 2017, Number 2, Pages 54—80
Download full paper: PDF, 139 Kb

Details

Authors and affiliations

J. Braun
Department Chemie, Ludwig-Maximilians-Universität
München, 81377 München, Germany

D. Romberger
Fakultät IV, Hochschule Hannover
Ricklinger Stadtweg 120, 30459 Hannover, Germany

H. J. Bentz
Institut für Mathematik und Angewandte Informatik
Samelsonplatz 1, 31141 Hildesheim, Germany

Abstract

In this paper we introduce a new polynomial representation of the Bernoulli numbers in terms of polynomial sums allowing on the one hand a more detailed understanding of their mathematical structure and on the other hand provides a computation of B2n as a function of B2n − 2. Furthermore, we show that a direct computation of the Riemann zeta-function and their derivatives at k ∈ Z is possible in terms of these polynomial representation. As an explicit example, our polynomial Bernoulli number representation is applied to fast approximate computations of ζ(3), ζ(5) and ζ(7).

Keywords

  • Bernoulli numbers
  • Bendersky’s L-numbers
  • Riemann zeta function

AMS Classification

  • 11B68

References

  1. Salschütz, L. (1895) Vorlesungen über die Bernoulli’schen Zahlen, ihren Zusammenhang mit den Secanten-Coeffizienetn und ihren wichtigsten Anwendungen, Monatshefte für Mathematik, Vol. 6, Wien, 1.
  2. Comptet, L. (1974) Advanced Combinatorics, Dordrecht, Boston.
  3. Brass, H. (1985) IAM-TUBS, Braunschweig.
  4. Apostol, T. M. (1998) Introduction to analytical number theory, Springer, New York.
  5. Hu, S., Kim, D. & Kim, M. S. (2013) New identities involving Bernoulli, Euler and Genocchi number, Advances in Difference Equations, 2013, 74.
  6. Bernoulli, J. (1713) Ars Conjectandi, Basel.
  7. Kummer, E. E. (1850) Allgemeiner Beweis des Fermatschen Satzes, däss die Gleichung x λ+y λ=z λ durch ganze Zahlen unlösbar ist, für alle diejenigen Potenz-Exponenten λ, welche ungerade Primzahlen sind und in den Zählern der ersten 1/2 (λ − 3) Bernoullischen Zahlen als Factoren nicht vorkommen, Journal für die reine und angewandte Mathematik, 40, 130.
  8. Diu, B. & Guthman, C. (1989) Elements de Physique Statistique, Collection Enseignement des Sciences, ed. Hermann Editeurs des Sciences et des Arts, Paris.
  9. Arakawa, T., Ibukiyama, T. & Kaneko, M. (2001) Bernoulli Numbers and Zeta Functions, Makino Shoten. Ltd., Tokyo.
  10. Sitaramachandrarao, R. & Davis, B. (1986) Some identities involving the Riemann zeta function II, Indian J. Pure Appl. Math., 17, 1175.
  11. Bentz, H. J. & Braun, J. (1994) Über die Werte von ζ(2n+1), Hildesheimer Informatikberichte, 14.
  12. Adamchik, V. S. (1998) Polygamma functions of negative order, J. Comput. Appl. Math., 100, 91.
  13. Adams, J. C. (1872) On some properties of Bernoulli’s numbers, and in particular, on Clausen’s Theorem respecting the fractional parts of these numbers, Proc. Camb. Phil. Soc., 2, 269.
  14. Caley, T. S. (2007) A review of the von Staudt-Clausen theorem, thesis at the Department of Mathematics and Statistics, Dalhouse University.
  15. Gould, H.W. (1972) Explicit formulas for Bernoulli numbers, Amer. Math. Monthly, 79, 44.
  16. Dilcher, K. (1989) Multiplikationstheoreme für die Bernoullischen Polynome und explizite Darstellungen der Bernoulli Zahlen, Abh. Math. Sem. Univ. Hamburg, 59, 143.
  17. Todorov, P. G. (1991) Explicit formulas for the Bernoulli and Euler polynimials and numbers, Abh. Math. Sem. Univ. Hamburg, 61, 175.
  18. Munch, O. J. (1959) Om Potensproduktsummer, Norddisk. Mat. Tidsskr., 7, 5.
  19. Kronecker L. (1883) Bemerkung zur Abhandlung des Herrn Worpitzky, J. Reine Angew. Math., 94, 268.
  20. Bergmann, H. (1967) Eine explizite Darstellung der Bernoullischen Zahlen, Math. Nachr., 34, 377.
  21. http://de.wikibooks.org/wiki/Formelsammlung Mathematik:Endliche Reihen (2009).
  22. Riordan, J. (1968) Combinatorial indentities. John Wiley and Sons, New York.
  23. Hecke, E. (1944) Herleitung des Euler-Produktes der Zetafunktion und einigerL-Reihen aus ihrer Funktionalgleichung, Mathematische Annalen, 119, 266.
  24. Havil, J. (2003) Exploring Eulers constant, Princeton University Press.
  25. Lima, F. M. S. (2014) A simpler proof of a Katsuradas theorem and rapidly converging series for ζ(2n + 1) and β(2n), Annali di Matematica manuscript, in press.
  26. Bendersky, L. (1933) Sur la fonction Gamma generalisee, Acta Math., 61, 263.
  27. Srivastava, H. M. (1999) Some rapidly converging series for ζ(2n + 1), Proceedings of the american mathematical society, 127, Number 2, 385
  28. Chang, C. H. & Ha, C. W. (2002) Eulerian polynomials and related explicit formulas, Fibonacci
    Quart., 40, 399-404
  29. Qi, F. (2014) Explicit formulas for derivatives of tangent and cotangent and for Bernoulli and other numbers, arXiv:1202.1205v2
  30. Qi, F. (2014) An explicit formula for Bernoulli numbers in terms of Stirling numbers of the second kind, arXiv:1401.4255v1
  31. Kellner, B. C. (2009) On asymptotic constants related to products of Bernoulli numbers and factorials, Integers, de Gruyter, 9, 83.
  32. Spieß, J. (1990) Some identities involving harmonic numbers, Mathematics of Computation, 56, 839.
  33. Borwein, J. M., Bradley, D. M. & Crandall, R. E. (2000) Computational strategies for the Riemann zeta function, Journal of Computation and Mathematics, 121, 247-296.
  34. Altoumaimi, M. (2009) http://nachrichten.t-online.de/c/18/88/06/28/18880628.html.
  35. Gould, H. W. (1972) Combinatorial Identities. A standardized set of tables listing 500 binomial coeffizient summations, Henry W. Gould Morgantown, W. Va.
  36. Nielsen, N. (1904) Recherches sur les polynomes et les nombres de Stirling, Annali di matematica pura ed applicata, 10, 287.
  37. Zhao, F. Z. (2008) Some properties of associated Stirling numbers, Journal of Integer Sequences, 11, 0.8.1.7.
  38. Mezo, I. & Dil, A. (2010) Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, 130, 360.
  39. Adegoke, K. (2010) New binary and ternary digit extraction (BBP-type) formulas for trilogarithm constants, New York J. Math., 16, 361.
  40. Broadhurst, D. J. (1998) Polylogarithmic ladders, hypergeometric series and the ten millionth digits of ζ(3) and ζ(5), http://www.arXiv.org/abs/math/9803067.
  41. Adegoke, K. (2013) Funct. Approx. Comment. Math., 48(1), 19.

Related papers

Cite this paper

Braun, J., Romberger, D. & Bentz, H. J. (2017). Fast converging series for zeta numbers in terms of polynomial representations of Bernoulli numbers. Notes on Number Theory and Discrete Mathematics, 23(2), 54-80.

Comments are closed.