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Abstract: In this paper we introduce a new polynomial representation of the Bernoulli num-
bers in terms of polynomial sums allowing on the one hand a more detailed understanding of
their mathematical structure and on the other hand provides a computation of B2n as a function
of B2n−2 only. Furthermore, we show that a direct computation of the Riemann zeta-function
and their derivatives at k ∈ Z is possible in terms of these polynomial representation. As an
explicit example, our polynomial Bernoulli number representation is applied to fast approximate
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1 Introduction

Much was written on Bernoulli numbers [1, 2, 3, 4, 5] since Jacob Bernoulli has discovered these
fascinating quantities [6]. Their importance is widely documented as they appear in a variety
of scientific fields of importance [7, 3, 8, 9]. In particular, their close relationship with the Rie-
mann zeta-function [10, 11, 12], shows the need for a better understanding of their mathematical
structure. Bernoulli numbers are rational, their fractional part is known by the results of Karl von
Staudt and Thomas Clausen, often cited as the Staudt-Clausen theorem [13, 14]. Furthermore,
several direct representations exist [2, 15, 16, 17], all show up as complicated expressions in form
of double-sums providing not much information on the numerator as well as on the denominator
of these numbers. No simple rules to compute Bernoulli numbers had been established so far
and in consequence explicit formulas are more or less of pure academic interest [3]. On the other
hand simpler representations could be of great practical importance, for example, in the field of
analytic number theory. A direct computation of the Riemann zeta-function and their derivatives
for all k ∈ Z in terms of Bernoulli numbers is possible. The famous Euler relation is such an
example [23, 24]

ζ(2n) = (−)n+1B2n
(2π)2n

2(2n)!
, (1.1)

or for negative integers it follows [12]

ζ(−n) = −Bn+1

n+ 1
. (1.2)

More delicate is the direct computation of ζ(2n + 1) and of ζ ′(2n). Explicit relations were
found by us [11] and by Adamchik [12] and Lima [25]. Some remarks on the corresponding
computational scheme will be given with an explicit example later on, where we demonstrate the
direct application of our polynomial Bernoulli number representation to ζ(3). At first, we found

ζ(2n+ 1) = (−)n+1L2n
2(2π)2n

(2n)!
, (1.3)

and

ζ ′(2n) = (−)n
(2π)2n

2(2n)!
B2n

(
2n

B2n

L2n−1 − γE − ln(2π)

)
, (1.4)

where γE denotes the Euler constant. The L-numbers were first introduced by Bendersky in
context with the logarithmic Gamma-function [26, 31]. The first derivative on the odd numbers
ζ ′(2n+ 1) may be computed as follows

ζ ′(3) = 2π2ζ ′′(−2) +

(
ln(2π)− 3

2
+ γE

)
ζ(3) , (1.5)

where

ζ ′′(−2) = 3L2 −
17

108
+ 4

∞∑
n=2

B2n+2H2n−2

(2n− 1)(2n)(2n+ 1)(2n+ 2)
(1.6)

55



can be written in terms of a Dirichlet series with the Bernoulli numbers and the harmonic numbers
[32] involved. Furthermore, we recall one of our earlier results for ζ(3) published in [11] where
we have introduced a fast converging series representation based on Bendersky’s L-numbers [26]

ζ(3) =
π2

8
− π2

12
ln
(π

3

)
+
π2

3

∞∑
n=1

ζ(2n)

2n(2n+ 1)(2n+ 2)

(
1

6

)2n

, (1.7)

which was also discussed by Srivastava [27], although not explicitly shown but in principle re-
sulting from a combination of Eq. (2.10) on page 389 and Eq. (3.9) on page 391. Using the
well-known Taylor–McLaurin series representation for ζ(s) [33]

ζ(s) =
1

s− 1
+

1

2
+
∞∑
n=2

Bk

k

(
s+ k

k

)
, (1.8)

with s ∈ −N , one finds for the first derivative at s = −2

ζ ′(−2) = − 1

36
+ 2

∞∑
n=4

B2n

(2n− 3)(2n− 2)(2n− 1)2n
. (1.9)

Following Bendersky [26] the logarithmic gamma function ln Γn(x) of order n may be written as
follows

λn(x+ 1) = xn ln(x)− Ln + ln Γn(x) (1.10)

where, for example, λ2(x+ 1) is defined as [26]

λ2(x+ 1) =

(
1

3
x3 +

1

2
x2 +

1

6
x

)
ln(x)

− 1

9
x3 +

1

12
x2 + 2

∞∑
n=2

B2n+2 x
−2n+1

(2n− 1)(2n)(2n+ 1)(2n+ 2)
.

(1.11)

At x = 1 it follows

λ2(2) = ζ ′(−2) = L2 . (1.12)

The L-numbers had been computed by Bendersky for all integer numbers n [26]. For n = 2

we have

L2 =
1

48

(
3

2
− ln

(π
3

)
+ 4

∞∑
n=1

ζ(2n)

(2n)(2n+ 1)(2n+ 2)

(
1

6

)2n
)
. (1.13)

This procedure allows a direct computation also of ζ ′(−n) as shown by us before [11].

ζ ′(−n) = −Ln +
Bn+1

n+ 1

n∑
q=1

1

q
. (1.14)
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Within this procedure it is possible to find fast converging series in terms of the L-numbers
for all ζ(2n− 1) values. For example, for n = 3 and n = 5 one gets [11].

ζ(5) =
3π2

29
ζ(3)− 25π4

12528
+

π4

1044
ln
(π

3

)
− 4π4

87

∞∑
n=1

ζ(2n)

2n(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)

(
1

6

)2n

.
(1.15)

and

ζ(7) =
72π2

659
ζ(5)− 2π4

1977
ζ(3) +

49π6

5337900
+

π6

266895
ln
(π

3

)
− 32π6

5931

∞∑
n=1

ζ(2n)

2n(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)(2n+ 5)(2n+ 6)

(
1

6

)2n (1.16)

These formulas had also been discussed by Srivastava [27], although not explicitly shown but
in principle resulting from a combination of Eq. (2.10) on page 389 and Eq. (3.9) on page 391.
For related constants like U2 or U4 we found:

U2 =
∞∑
n=1

(−)n+1 1

(2n− 1)2
= 1 − 2

∞∑
n=1

(−)n+1nL2n

(2n)!

(π
2

)2n
, (1.17)

and

U4 =
∞∑
n=1

(−)n+1 1

(2n− 1)4

=
9

2
− 2 ln(2) − 7

6
U2 −

7

8
ζ(3) +

4

3

∞∑
n=1

(−)n+1 n
3L2n+2

(2n+ 2)!

(π
2

)2n+2

.

These examples show that not only zeta values can be expressed by Bendersky’s L-numbers
and as a consequence by the even Bernoulli numbers. With this work we introduce a new poly-
nomial representation of the even Bernoulli numbers which permits a fast computation of these
constants, which is comparable with the computation by use of available BBP-like formulas. Fur-
thermore, our method permits the use of polylogarithmic identities on which BBP formulas are
typically based.

The paper is organized as follows. In the next section we introduce a new formula for the even
Bernoulli numbers which serves as a basis for our polynomial representation. We present a proof
of this formula discuss it in context with other well-known series representations of Bernoulli
numbers, with a special emphasize on the numerical effort which is needed to compute B2n. In
section 4 and 5 we present first applications of our formalism to the computation of ζ(3), ζ(5) and
ζ(7) and compare this with corresponding BBP-type formulas concerning the numerical effort.
The final section 6 gives a summary of the results and a short outlook. In the appendix section
we present as a further application of our polynomial representation the computation of B2n as
a function of B2n−2 only. Based on this formula an even faster computation of zeta numbers by
one order of magnitude is possible.
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2 An alternative formula for the even Bernoulli numbers

In this section we present the basic equation from which the Bernoulli numbers B2n can be com-
puted.

Theorem 2.1. We found for B2n

B2n =
22n+1(2n)!

22n − 2

n∑
k=1

(−)k+1

(2n+ k)!

(
n+ 1

k + 1

)
∗

[ k
2
]∑

l=0

(−)l
(
k

l

)(
k

2
− l
)k+2n

. (2.1)

The formula shown above represents an alternative computational scheme for the Bernoulli
numbers, as only the even numbers are calculated, where the outer summation index runs up
to n only. Similar expressions were found by Chang et al. [28] and recently by Qi [29, 30].
All other formulas available from literature [2, 15, 16, 17] including the representation which
was introduced in 2009 [34] compute the Bernoulli numbers Bn by a summation up to n. A
direct computation of the Bernoulli numbers by use of Eq. (2.1) is possible, where a runtime
comparison with a variety of other existing recurrence formula reveals that our formula permits
the computation of B2n numbers which is typically faster by factors ranging between 1.5 and 5.4.
Corresponding numerical results are presented in Table 1:

[18] [19] [20] [15] [21] This work

B10 2.5 1.5 1.5 3.0 2.0 1.0
B20 5.0 1.8 2.0 5.2 3.0 1.0
B30 4.8 1.6 1.7 5.3 3.1 1.0
B40 4.8 1.6 1.8 5.4 3.1 1.0

Table 1: Runtime comparison between different recurrence relations for Bernoulli numbers with
our present formula. Shown is the factor which results from an explicit calculation of the even
Bernoulli numbers for n = 10, 20, 30 and 40.

Furthermore, and this is the most important point, our double-sum like representation permits
a direct link to the so called central factorial numbers described in detail by Riordan [22], which
finally offers the possibility to introduce a polynomial representation of the Bernoulli numbers not
known before. We show later on that this polynomial representation permits a fast computation
of all odd zeta-numbers ζ(2n+ 1) and related constants discussed in the introduction.

To prove the theorem we first list some helpful identities.

Lemma 2.1.

Lemma 2.1.1.
k − 2l

i+ 1

(
i+ 1

k − l

)(
k − l
l

)
=

(
i

k − l − 1

)(
k − l − 1

l

)
. (2.2)
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Lemma 2.1.2.

n+ 1

n+ 1− k + 2l

(
n

k − l

)(
k − l
l

)
=

(
n+ 1

k − 2l

)(
n− k + 2l

l

)
. (2.3)

These identities are simply proved by a direct calculation of both sides.

Lemma 2.1.3.

n−1∑
i=0

(
k − 2l

i

)(
n

i

)−1
=

(
n+ 1−

(
k − 2l

n

))
n+ 1− k + 2l

. (2.4)

Identity (2.4) is found in [22, 35]. Now we start our proof with the well-known recursive formula
[5]:

B2n =
1

2
− 1

2n+ 1

n−1∑
l=0

(
2n+ 1

2l

)
B2l . (2.5)

This recursive relation can be explicitly iterated to compute B2n. The first iteration step, which
gives the correct result for B2 and B4 follows to

2B2n

(2n)!
=

1

(2n)!
− 2

(2n+ 1)!

(
1 +

1

2

n−1∑
l=1

(
2n+ 1

2l

))

+
2

(2n+ 2)!

n−1∑
l=1

(
2n+ 2

2l + 1

)(
1 +

1

2

l−1∑
k=1

(
2k + 1

2l

))
∓ ... (2.6)

Introducing the abbreviations

S1(n) = 1 +
1

2

n−1∑
l=1

(
2n+ 1

2l

)
=

1

2
(22n − 2n) . (2.7)

and

S2(n) =
n−1∑
l=1

(
2n+ 2

2l + 1

)(
1 +

1

2

l−1∑
k=1

(
2l + 1

2k

))
=

9

8
32n − (2n+ 1)22n + 2n2 + n− 9

8
, (2.8)

we have

2B2n

2n
=

1

2n
− 2S1(n)

2n(2n+ 1)
+

2S2(n)

2n(2n+ 1)(2n+ 2)
± . (2.9)

Lemma 2.2. Si(n) for i > 1 is recursively defined by the following relation

Si+1(n) =
n−1∑
l=i

(
2n+ i+ 1

2l + i

)
Si(l) . (2.10)
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This relation simply follows from continued iteration in (2.6), where S1(n) = 1
2
(22n−2n) is given

explicitly for all n ∈ N. Then the Bernoulli numbers B2n result from

B2n =
1

2
−

n∑
l=1

(−)l+1

l!

(
2n+ l

l

)−1
Sl(n) . (2.11)

For a direct computation of (2.11) we convert in a first step all partial sums Si(n), i =

1, 2, 3, ... ∈ N to a more appropriate form. For i = 1, 2 and 3 it follows explicitly

S1(n) =
1

4
22n+1 − 1

2
(2n)12n+1 , (2.12)

S2(n) =
1

8
32n+2 +

1

4
22n+2 − 1

8
12n+2 − 2(2n+ 2)S1(n)

− 1

2
(2n+ 1)(2n+ 2) ,

S3(n) =
1

16
42n+3 +

1

8
32n+3 − 1

8
22n+3 − 3

8
12n+3 − 3(2n+ 3)S2(n)

− 3(2n+ 2)(2n+ 3)S1(n)− 1

2
(2n+ 1)(2n+ 2)(2n+ 3) .

Formula (2.14) represents a ternary sum because of the repeated use of the recursion formula
(2.10), and as a consequence Sn(n) denotes a n-fold sum. At a first glance, this fact sounds
very discouraging but fortunately most of the terms cancel if all partial sums Si(n) with index
i = 1, ..., n − 1 will be inserted in the corresponding n-fold partial sum Sn(n) with index n. To
illustrate this procedure we compute the partial sum with index i = 3 by using explicitly the
corresponding expressions obtained for S1(n) (2.12) and S2(n) (2.13)

Example 2.1.
S3(n) =

1

16
42n+3 +

1

8
32n+3 − 1

8
22n+3 − 3

8
12n+3

− 3(2n+ 3)

(
1

8
32n+2 +

1

4
22n+2 − 1

8
12n+2

)
+ 3(2n+ 2)(2n+ 3)

(
1

4
22n+1 − 1

2
(2n)12n+1

)
− 1

2
(2n+ 1)(2n+ 2)(2n+ 3) .

(2.13)

It follows that the term in S2(n) which contains S1(n) as a factor cancels in the summation for
S3(n). If this procedure is applied to S4(n) all terms in the corresponding summation which
contain S2(n) or S3(n) as factors cancel. This way we have calculated the Si(n) for i = 1, ..., 5,

which is sufficient for an explicit analysis of the coefficient structure for all Si(n), i ∈ N. We
found:

Si(n) =
1

2i+1

i∑
k=0

(−)k(i+ 1− k)2n+i
k∑
l=0

hi(l, k) (k − l)!

∗
(

2

i+ 2− k

)k−l(
2n+ i

k − l

)(
i

i+ l − k

) (2.14)
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with

hi(l, k) =

(
cos

πl

2
− sin

πl

2

)(
i+ l − k
t1(l)

)

−
(

cos
πl

2
+ sin

πl

2

)(
i+ l − k
t2(l)

)
,

(2.15)

where t1(l) = l
2
− 1

4
+ (−)l

4
) and t2(l) = l

2
− 3

4
− (−)l

4
). The index t1(l) produces the numbers 0,

0, 1, 1, 2, 2, 3, 3, for l = 0, 1, 2, 3, ..., k. Thus has the same values for l even or odd. The second
index t2(l) is slightly different as this sequences starts with −1 for l = 0. The corresponding
analysis is presented in more detail in the appendix section.

As an example, we show in Table 2 the complete list of numbers which result for Si(n), where
i = 1, ..., 6 and n = 1, ..., 10:

S1(n) S2(n) S3(n) S4(n) S5(n) S6(n)

n = 1 1 0 0 0 0 0
n = 2 6 20 0 0 0 0
n = 3 29 392 1680 0 0 0
n = 4 124 5112 73920 369600 0 0
n = 5 507 55220 2000856 30270240 16816800 0
n = 6 2024 544700 43099056 1462581120 2.287+10 1.372+11

n = 7 8185 5135184 821292576 5.475+10 1.788+12 2.868+13

n = 8 32760 47313584 1.459+10 1.772+12 1.062+14 3.384+15

n = 9 131063 430867484 2.489+11 5.250+13 5.365+15 2.991+17

n = 10 524278 3900612564 4.140+12 1.470+15 2.444+17 2.218+19

Table 2: Computed numbers for Si(n) with i running from 1 to 6 and n running from 1 to 10.

Proof. Using now (2.11) one ends up with a first expression for B2n in form of a ternary sum
only

B2n = 22n(2n)!
n∑
i=0

i∑
k=0

t1(k)∑
l=0

(−)k+i+l
2n+ i− 2k + 4l + 1

i− k + l + 1

∗

(
i

k − 2l

)(
i− k + 2l

l

) (
i+1−k

2

)2n+i−k+2l+1

(2n+ i− k + 2l + 1)!
,

(2.16)

Making use of Lemma (2.1) the different terms in (2.18) can be rearranged, leading to a simpler
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formula for B2n

B2n =
22n+1(2n)!

22n − 2

n∑
i=1

i∑
k=0

t1(k)∑
l=0

(−)k+i+l

∗

(
i

k − l + 1

)(
k − l − 1

l

) (
i+1−k

2

)2n+i−k+2l+1

(2n+ i− k + 2l + 1)!
. (2.17)

A further rearrangement results in

B2n = − 22n(2n)!

22n−1 − 1

n−1∑
k=0

t1(k)∑
l=0

(−)n−k+l

∗

(
n

k − l

)(
k − l
l

) (
n−k
2

)3n−k+2l

(3n− k + 2l)!

n−1∑
i=0

(
k − 2l

i

)(
n

i

)−1 , (2.18)

where we have interchanged the sum over i with the other two sums. As the variable i appears
in the inner sum only this offers the possibility to reduce the ternary sum to a binary one. This is
done by use of Lemma (2.2) [22, 35].

As the contribution from the Binomial coefficient
(
k−2l
n

)
is zero it remains for B2n

B2n = (−)n+1 22n(2n)!

22n−1 − 1

n−1∑
k=0

t1(k)∑
l=0

(−)l−k

∗

(
n+ 1

k − 2l

)(
n− k + 2l

l

) (
n−k
2

)3n−k+2l

(3n− k + 2l)!
, (2.19)

where we made use of Lemma (2.3). Next, we rewrite (2.19) as follows

B2n = (−)n+1 22n(2n)!

22n−1 − 1

n∑
k=0

(−)k

(3n− k)!

(
n+ 1

k

)

∗
t1(n−k)∑
l=0

(−)l

(
n− k
l

)(
n− k

2
− l
)3n−k

, (2.20)

and use the relation

t1(n−k)∑
l=0

(−)l

(
n− k
l

)
(n− k − 2l)3n−k =

t1(k)∑
l=0

(−)l

(
k

l

)
(k − 2l)2n+k , (2.21)

which is simply proved in replacing n − k by k as the summation is symmetric in these indices.
Finally we result in

B2n =
22n(2n)!

22n−1 − 1

n∑
k=0

(−)k+1

(
n+ 1

n− k

)
(1
2
)2n+k

(2n+ k)!

∗
t1(k)∑
l=0

(−)l

(
k

l

)
(k − 2l)2n+k . (2.22)
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Finally the summation over t1(k) can be replaced by a summation over [k
2
] because the inner

sum behaves symmetric with respect to the index t1(k). This last step completes the proof of the
theorem as the binomial coefficients in (2.1) and (2.24) are identical.

3 The α-function as a generator
to compute Bernoulli numbers

For the product of the inner sum in (2.1) with the factor 2(2n)!
(2n+k)!

represents a set of functions

depending on the variable k ∈ N labelled by the index n. The α(n)
l , l = 1, ..., n, can be directly

computed in a numerical sense by use of the definition shown below. For k = 0, 1 and 2 this
product is known from literature [22, 35]. The generalization to k ≥3 is straightforward, where
explicit formulas for the coefficients α(n)

l will be given at the end of this section. We then have

Definition 3.1.

n∑
l=1

α
(n)
l kl =

2(2n)!

(2n+ k)!

[ k
2
]∑

j=0

(−)j

(
k

j

)
(
k

2
− j)k+2n . (3.1)

Therefore, it follows for B2n

B2n =
22n

22n − 2

n∑
k=1

(−)k+1

(
n+ 1

k + 1

)
n∑
l=1

α
(n)
l kl . (3.2)

Next, we show that the set α-functions can be defined for negative integer numbers as argu-
ments. Furthermore, it will be demonstrated that a computation of the α-functions for negative
integers provides a new expression to define the Bernoulli numbers. We start with a recursive
formula which the α-functions fulfills. It is

Lemma 3.1.
n∑
l=1

α
(n)
l kl =

k(k − 1)

(2n+ k)(2n+ k − 1)

n∑
l=1

α
(n)
l (k − 2)l

+
1

4
k2

2n(2n− 1)

(2n+ k)(2n+ k − 1)

n−1∑
l=0

α
(n−1)
l kl (3.3)

with α0
0 = 1.

To prove the above lemma let us first recall the following recursive formula obtained by Rior-
dan [22], for the so called central factorial numbers1

T (n, k) = T (n− 2, k − 2) +
1

4
k2T (n− 2, k) , (3.4)

1Riordan discusses these numbers in context with the so called central difference operator δ in chapter V of his
book “Combinatorial identities”.
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where

T (n, k) =
1

k!

k∑
l=0

(−)l

(
k

l

)(
k

2
− l
)n

. (3.5)

From this it follows immediately

T (2n+ k, k) =

(
2n+ k

k

)
n∑
l=1

α
(n)
l kl . (3.6)

Now it is easy to complete the proof. First we write

T (2n+ k, k) = T (2n+ k − 2, k − 2) +
1

4
k2T (2n+ k − 2, k) . (3.7)

Substituting here (3.6) the recursive formula for the α-functions follows directly for k ∈ N.
Furthermore, we have shown that the central factorial numbers are are essentially the same as the
α-functions, which can be presumed as a key quantity in computing the Bernoulli numbers.

Using the notation

Definition 3.2.

A(n)(k) =
n∑
l=1

α
(n)
l kl , (3.8)

it follows for example for k = 1

Example 3.1.

A(n)(1) =
1

22n (2n+ 1)
. (3.9)

This way the sumA(n)(k) may be calculated for all k ∈ N. To extend the calculational scheme
to negative integers we introduce the following relation

Lemma 3.2.

A(n)(−k) = − k

(
n+ k

n

)
n∑
l=1

(−)l+1

l + k

(
n

l

)
A(n)(l) . (3.10)

To prove the above relation we use the following identity [22, 35]

Proposition 3.1.

n∑
l=1

(−)l

k + l

(
n

l

)
lm = (−)m km−1

(
n+ k

k

)−1
. (3.11)
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Proof. Writing now

A(n)(−k) = −k

(
n+ k

k

)
n∑
l=1

(−)l+1

l + k

n∑
m=1

α(n)
m lm

= k

(
n+ k

k

)
n∑

m=1

α(n)
m

n∑
l=1

(−)l

k + l

(
n

l

)
lm

= −k

(
n+ k

n

)
n∑
l=1

(−)l+1

l + k

(
n

l

)
A(n)(l) . (3.12)

As a consequence we find the result that A(n)(−1) is “proportional” to B2n.

Example 3.2.

A(n)(−1) = −22n − 2

22n
B2n . (3.13)

Using (3.3) it follows further

A(n)(−2) = (2n− 1) B2n , (3.14)

and for example

A(n)(−3) =
1

2
(2n)(2n− 1)

22n − 2

22n
B2n

− 1

4
(2n− 1)(2n− 2)

22n−2 − 2

22n−2 B2n−2 , (3.15)

where in the expression for A(n)(−3) both B2n and B2n−2 appear. More detailed information
about the properties of the A(n)(k) can be obtained by changing to an alternative representation,
which was first introduced by Riordan [22], again in context with the so called central factorial
numbers.

Next we introduce the coefficients an,l which are defined by the recursive formula presented
below [22]

Definition 3.3.

an,l =
n−1∑
i=l−1

ai,l−1

(
2n+ l − 1

2n− 2i

)
, (3.16)

with an,0 = δn,0 and an,1=1 .

The use of these coefficients allows a reformulation of the A(n)(k) functions

Lemma 3.3.

A(n)(k) =
1

22n

(
2n+ k

2n

)−1 n∑
l=0

an,l

(
2n+ k

2n+ l

)
, (3.17)
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Proof. Following Riordan [22] we first have

22nT (2n+ k, k) =
n∑
l=0

an,l

(
2n+ k

2n+ l

)
. (3.18)

Using (3.6) it follows

T (2n+ k, k) =
1

22n

k∑
l=0

an,l

(
2n+ k

2n+ l

)

=

(
2n+ k

2n

)
A(n)(k) (3.19)

and this completes the proof.

It should be mentioned here that a connection between the central factorial numbers and the
Bernoulli numbers exists [28]. Although the Bernoulli numbers were not discussed by Riordan
in context with the central factorial numbers. This is because the recursive relation (3.19), which
allows to compute the central factorial numbers is linked by (3.16) only to the α-functions but not
directly to the Bernoulli numbers.

Example 3.3.

A(2)(k) = α
(2)
1 k + α

(2)
2 k2 =

1

24

(
k + 4

k

)−1 [(
k + 4

5

)
+ 10

(
k + 4

6

)]
=

1

48
k2 +

1

4
B4k , (3.20)

where the Bernoulli number B4 appears as the coefficient of the lowest order polynomial term.

Computing (3.16) for k = −1 we find for B2n

B2n =
1

22n − 2

n∑
l=1

(−)l+1 an,l

(
2n+ l

2n

)−1
. (3.21)

In a next step we substitute for an,l

Definition 3.4.

an,l =:
(2n)!

6n
l

(
2n+ l

2n

)
P (n+1−l)(n) (3.22)

by introducing a new set of functions P (n+1−l)(n).

As for the an,l coefficients we can define a recursive relation for the P-functions, which results
from substituting (3.22) in (3.16). We get:

P (n−l+1) = 6n
l − 1

2n− l

n−1∑
i=l−1

P i−l+2(i)

6i(2n− 2i)
, l > 1 . (3.23)
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Example 3.4. As an example we solve this recursion relation for l = n and for l = n − 1. It
follows first:

P (1)(n) =
n− 1

n
P (1)(n− 1) . (3.24)

This is a homogenous difference equation of first order with the solution P(1)(n) = a
n

, where the
constant a is fixed to a = 1 through the boundary condition that P(1)(1) insertet in (3.25) must
give B2. For l = n− 1 we get:

P (2)(n) − 3(n− 2)

3n− 1
P (2)(n− 1) =

3

2(3n− 1)
. (3.25)

Again this is a difference equation of first order with a non-constant coefficient, but of inhomoge-
nous type. The special solution of this inhomogenous equation results to P (2)(n) = 3

10
. This

shows that for all l values l = n − 2, n − 3, ... an inhomogenous differention equation results
from the recursion relation, where the special solution is always a polynomial function in n, but
the degree of the polynom increases where the highest exponent is given by n− l − 1.

Inserting (3.22) in (3.21) we are able to define the B2n in terms of this polynomials

B2n =
(2n)!

(22n − 2)6n

n∑
l=1

(−)l+1 l P (n+1−l)(n) . (3.26)

The P-polynomials introduced in (3.22) are related to the α-functions

Lemma 3.4.

P (n+1−l)(n) =
22n6n(−)l

l(2n)!

l∑
k=1

(−)k

(
l

k

)
A(n)(k) , (3.27)

and vice versa for A(n)(k)

A(n)(k) =
(2n)!

22n6n

n∑
l=1

l

(
k

l

)
P (n+1−l)(n) . (3.28)

Proof. First, the relation for A(n)(k) results by substituting (3.22) in (3.16) and by reformulating
the product of the three binomial coefficients. The above formula for the P-polynomials is then
proved by substituting (3.24) in (3.23). This gives

B2n =
22n

22n − 2

n∑
l=1

l∑
k=1

(−)k+1

(
l

k

)
A(n)(k) . (3.29)

Replacing now l by n+ l − 1 it follows

B2n =
22n

22n − 2

n∑
l=1

n+1−l∑
k=1

(−)k+1

(
n+ 1− l

k

)
A(n)(k) . (3.30)
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The double sum can be written as
n∑
k=1

(−)k+1

(
n

k

)
A(n)(k) + ...+

n∑
k=1

(−)k+1

(
1

k

)
A(n)(k)

=
n∑
k=1

(−)k+1

(
n+ 1

k + 1

)
A(n)(k) , (3.31)

which finally gives (3.2).

As an example, we have for the first three P-polynomials

Example 3.5.

P (1)(n) =
1

n
, P (2)(n) =

3

10
, P (3)(n) =

3(21n− 43)

23 52 7
. (3.32)

All P-polynomials can be regarded as ordinary polynomials, apart from the first one.

It was shown by (3.10) that the α-functions can be defined for negative integers. The corre-
sponding formula computed as a function of the P-polynomials is given by

Lemma 3.5.

A(n)(−k) = (−)n
(2n)!

6n22n
k

n∑
l=1

(−)l+1

(
n+ k − l

k

)
P (l)(n) . (3.33)

Proof. Computing equation (3.25) for negative k values instead for positive k values gives

A(n)(−k) =
(2n)!

6n22n

n∑
l=1

(−)l l

(
l + k − 1

l

)
P (n+1−l)(n) . (3.34)

Replacing again l by n+ l − 1 it follows

A(n)(−k) =
(2n)!

6n22n

n∑
l=1

(−)n+1−l(n+ 1− l)

(
n+ k − l
n+ 1− l

)
P (l)(n)

= (−)n
(2n)!

6n22n

n∑
l=1

(−)l+1(n+ k − l)

(
n+ k − l − 1

k − 1

)
P (l)(n) . (3.35)

The relation (3.32) allows an explicit definition of the α(n)
l -functions by comparing directly

the corresponding coefficients in the polynomials on both sides. For α(n)
1 we found the interesting

result

Corollary 3.1.

B2n

2n
=

(2n)!

6n22n

n∑
l=1

(−)l+1 s(l, 1)

(l − 1)!
P (n+1−l)(n)

=
(2n)!

6n22n

n∑
l=1

(−)l+1 P (n+1−l)(n) = α
(n)
1 . (3.36)
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The coefficients for l ≥ 2 become

α
(n)
2 =

(2n)!

6n22n

n∑
l=2

(−)l+2 s(l, 2)

(l − 1)!
P (n+1−l)(n) , (3.37)

α(n)
n =

(2n)!

6n22n

n∑
l=n

(−)l+n
s(l, n)

(l − 1)!
P (n+1−l)(n)

=
(2n)!

6n22n

s(n, n)

(n− 1)!
P (1)(n) =

(2n)!

6n22nn!
, (3.38)

where s(l, k) denote the Stirling numbers of the first kind [36, 37, 38].

Formula (3.32) can be computed for different k-values. As an example we present here the
computation for k = 0. The corresponding calculation for k = 1 and 2 is shown in the appendix
section.

Example 3.6. We find for k = 0 :

n∑
l=1

(−)l+1 P (n+1−l)(n) =
22n6n

2n(2n!)
B2n, (3.39)

or
n∑
l=1

(−)l+1 P (l)(n) = (−)n+1 22n6n

2n(2n!)
B2n , (3.40)

where
n∑
l=1

(−)l+1 P (n+1−l)(n) = (−)n+1

n∑
l=1

(−)l+1 P (l)(n) . (3.41)

4 Application to a series representation of ζ(3)

As mentioned in the introduction our polynomial representation of the Bernoulli numbers can be
used to compute rather fast converging sequences, for example, for ζ(3). Using (1.1) and (3.39)
it follows

ζ(2n) =
1

2
(2n)ζ(2)n

n∑
l=1

(−)l+1P (l)(n). (4.1)

In other words this special P-polynomial sum converges rather fast as n increases

lim
n→∞

n∑
l=1

(−)l+1P (l)(n) = 0 . (4.2)

This is essential because the prefactor in (3.39) growths much faster with n as the Bernoulli
numbers do. As a consequence the P -polynomial sum must compensate this behavior so that
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the product results in B2n. Also, a representation of ζ(2n) in terms of ζ(2) is possible with the
help of the polynomial representation. Furthermore, by use of (5.1) a direct representation of the
ln sin(x) function is possible. We find

ln sin(πx) = ln(πx) − 2
∞∑
n=1

ζ(2n)

2n

= ln(πx) −
∞∑
n=1

ζ(2)n
n∑
l=1

(−)l+1P (l)(n) x2n . (4.3)

Following Bendersky [26] we have

ζ(3) = − 6π2

∫ 1
6

0

∫ x

0

ln sin(πy)dy − π2

12
ln(2) . (4.4)

By integrating (5.3) twice and combining the result with (5.4) it follows

ζ(3) =
π2

8
− π2

12
ln
(π

3

)
+
π2

3

∞∑
n=1

1

2n(2n+ 1)(2n+ 2)

(
π

6
√

6

)2n

− π2

20

∞∑
n=2

1

(2n+ 1)(2n+ 2)

(
π

6
√

6

)2n

+ R

(
π

6
√

6

)
.

(4.5)

If we consider the first only the first two terms in the series ζ(3) follows with an error δ < 10−7.
The convergence is very fast, as higher order sums according to the polynomials P (i)(n) with
index i = 3, 4, ... start with a summation index n = i instead of n = 1.

In the next section we present alternative series for ζ(3), ζ(5) and ζ(7) which converge even
faster using Eq. (3.33) for k = 2.

5 Computation of ζ(3), ζ(5) and ζ(7)

As the main application we use now an alternative polynomial representation to compute ζ(3),
ζ(5) and ζ(7). With Eq. (3.33) it follows:

Proposition 5.1.

ln sin(πx) = ln(πx)−
∞∑
n=1

2ζ(2)n

(2n− 1)2n

(
n∑
l=1

(−)l+1

(
n+ 2− l

2

)
P (l)(n)

)
x2n . (5.1)

As a consequence we find for ζ(3) by integration

ζ(3) =
π2

8
− π2

12
ln
(π

3

)
+ 36

∞∑
n=1

(−)n+1cn

(
π

6
√

6

)2n

, (5.2)

with

c1 =
∞∑
n=1

n(n+ 1)P (1)(n)

(2n− 1)2n(2n+ 1)(2n+ 2)

(
π

6
√

6

)2n

, (5.3)
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c2 =
∞∑
n=1

n(n+ 1)P (2)(n+ 1)

(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)

(
π

6
√

6

)2n

, (5.4)

c3 =
∞∑
n=1

n(n+ 1)P (3)(n+ 2)

(2n+ 3)(2n+ 4)(2n+ 5)(2n+ 6)

(
π

6
√

6

)2n

, (5.5)

c4 =
∞∑
n=1

n(n+ 1)P (4)(n+ 3)

(2n+ 5)(2n+ 6)(2n+ 7)(2n+ 8)

(
π

6
√

6

)2n

, (5.6)

and this way for higher coefficients cn. Using these first four coefficients only we find the follow-
ing approximate value for ζ(3):

ζ(3) > 1.2020569031595738... , (5.7)

with an error δ < 0.2*10−13. The convergence is about 3 orders of magnitude with the summation
index n. This is about 1 order of magnitude faster compared to the corresponding numerical
values which result from the series representation (1.7). Furthermore, this new series shows up
with an alternating sign which has some benefit in estimating its the convergence properties.

A further advantage of this type of summation is that all infinite sums appearing can be ex-
pressed in terms of elementary functions based on logarithmic expressions. This allows a more
detailed insight on ζ(3) and in consequence on all other zeta-values evaluated at odd integer
numbers.

Example 5.1.

2∑
n=1

(−)n+1cn

(
π

6
√

6

)2n

=

(
2x− 1

20
x2
)

ln

(
1 + x

1− x

)
+

(
1

2
x2 − 1

20

)
ln
(
1− x2

)
− 15

16
x2 (5.8)

with x = π
6
√
6
.

The explicit comparison between other series representations and our formula is shown in
Table 3: where the numerical comparison has been performed between our approach and the
BBP-formalism by use of the following formula [39]:

5π2 ln(3)

104
− 3 ln(3)3

104
=

1

1053

∞∑
n=1

(
1

729

)n ( 729

(12n+ 1)3
+

243

(12n+ 2)3
− 81

(12n+ 4)3

− 81

(12n+ 5)3
− 54

(12n+ 6)3
− 27

(12n+ 7)3

− 9

(12n+ 8)3
+

3

(12n+ 10)3
+

3

(12n+ 11)3
+

2

(12n+ 12)3

) (5.9)

Using (1.15) we analogously we find for ζ(5):

ζ(5) =
3π2

29
ζ(3)− 25π4

12528
+

π4

1044
ln
(π

3

)
− 144π2

29

∞∑
n=1

(−)n+1cn

(
π

6
√

6

)2n

, (5.10)
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ζ(3) ζ(3)-Zeta series ζ(3)-(Zeta series+BP) ζ(3)-BBP formula [39]

1st order
n=1 δ=0.2*10−04 δ=0.2*10−05 δ=0.5*10−06

2nd order
n=2 δ=0.2*10−06 δ=0.1*10−08 δ=0.9*10−10

3rd order
n=3 δ=0.3*10−08 δ=0.8*10−12 δ=0.4*10−13

4th order
n=4 δ=0.4*10−10 δ=0.2*10−13 δ=0.2*10−16

Table 3: Approximate computation of ζ(3) as a function of the summation index n by use of
Eq. (1.7) without and with use of the polynomial representation. The numerical errors are com-
pared to the BBP-type formula [39]

with

c1 =
∞∑
n=1

n(n+ 1)P (1)(n)

(2n− 1)2n(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)

(
π

6
√

6

)2n

, (5.11)

c2 =
∞∑
n=1

n(n+ 1)P (2)(n+ 1)

(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)(2n+ 5)(2n+ 6)

(
π

6
√

6

)2n

,

(5.12)

c3 =
∞∑
n=1

n(n+ 1)P (3)(n+ 2)

(2n+ 3)(2n+ 4)(2n+ 5)(2n+ 6)(2n+ 7)(2n+ 8)

(
π

6
√

6

)2n

,

(5.13)

c4 =
∞∑
n=1

n(n+ 1)P (4)(n+ 3)

(2n+ 5)(2n+ 6)(2n+ 7)(2n+ 8)(2n+ 9)(2n+ 10)

(
π

6
√

6

)2n

,

(5.14)

Table 4 shows the corresponding computational results: where the numerical comparison has
been performed between our approach and the BBP-formalism by use of the following formula
[40, 41]:

31

32
ζ(5) − 343

99360
π4 ln(2) +

5

2484
π2(ln(2))3 − 2

1035
(ln(2))5

=
128

69

∞∑
n=1

(
1√
2

)n cos(nπ
4

)

n5
− 20

69

∞∑
n=1

(
1

2

)n
1

n5
(5.15)
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ζ(5) ζ(5)-Zeta series ζ(5)-(Zeta series+BP) ζ(5)-BBP formula [41]

1st order
n = 1 δ = 0.6 ∗ 10−06 δ = 0.1 ∗ 10−06 δ = 0.7 ∗ 10−06

2nd order
n = 2 δ = 0.4 ∗ 10−08 δ = 0.1 ∗ 10−09 δ = 0.1 ∗ 10−08

3rd order
n = 3 δ = 0.3 ∗ 10−10 δ = 0.1 ∗ 10−12 δ = 0.8 ∗ 10−11

4th order
n = 4 δ = 0.3 ∗ 10−12 δ = 0.1 ∗ 10−15 δ = 0.1 ∗ 10−12

Table 4: Approximate computation of ζ(5) as a function of the summation index n by use of
Eq. (1.15) without and with use of the polynomial representation. The numerical errors are com-
pared to the BBP-type formula [41]

For ζ(7) we found:

ζ(7) =
72π2

659
ζ(5)− 2π4

1977
ζ(3) +

49π6

5337900
+

π6

266895
ln
(π

3

)
+

3456π4

5931

∞∑
n=1

(−)n+1cn

(
π

6
√

6

)2n

,
(5.16)

with

c1 =
∞∑
n=1

n(n+ 1)P (1)(n)
(

π
6
√
6

)2n
(2n− 1)2n(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)(2n+ 5)(2n+ 6)

(5.17)

c2 =
∞∑
n=1

n(n+ 1)P (2)(n+ 1)
(

π
6
√
6

)2n
(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)(2n+ 5)(2n+ 6)(2n+ 7)(2n+ 8)

(5.18)

c3 =
∞∑
n=1

n(n+ 1)P (3)(n+ 2)
(

π
6
√
6

)2n
(2n+ 3)(2n+ 4)(2n+ 5)(2n+ 6)(2n+ 7)(2n+ 8)(2n+ 9)(2n+ 10)

(5.19)

c4 =
∞∑
n=1

n(n+ 1)P (4)(n+ 3)
(

π
6
√
6

)2n
(2n+ 5)(2n+ 6)(2n+ 7)(2n+ 8)(2n+ 9)(2n+ 10)(2n+ 11)(2n+ 12)

(5.20)

Table 5 shows the corresponding computational results: where no BBP-type formula is available
for ζ(7).
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ζ(7) ζ(7)-Zeta series ζ(7)-(Zeta series+BP) ζ(7)-BBP formula

1st order
n = 1 δ = 0.7 ∗ 10−08 δ = 0.2 ∗ 10−08

2nd order
n = 2 δ = 0.3 ∗ 10−10 δ = 0.1 ∗ 10−11

3rd order
n = 3 δ = 0.2 ∗ 10−12 δ = 0.8 ∗ 10−15

4th order
n = 4 δ = 0.2 ∗ 10−14 δ = 0.6 ∗ 10−18

Table 5: Approximate computation of ζ(7) as a function of the summation index n by use of
Eq. (1.16) without and with use of the polynomial representation. For ζ(7) no BBP-type formula
is available for reasons of comparison.

6 Approximations of zeta numbers using B2n and B2n−2

We present a formula which allows to compute the Bernoulli number B2n as a function of the
Bernoulli number B2n−2 only. This formula decouples B2n from all other Bernoulli numbers. We
simply compute (3.32) for k = 4 with the help of (3.3). It follows:

B2n

2n
=

B2n−2

2n− 2
+ (−)n+1 (2n)!

22n6n

(
2n

4

)−1 n∑
l=1

(−)l+1

(
n+ 4− l

4

)
P (l)(n) . (6.1)

This formula allows the computation ofB2n as a function ofB2n−2 only by use of the correspond-
ing Bernoulli-type polynomials P (l)(n). Furthermore, it permits an approximation of the odd zeta
numbers which works faster by about one order of magnitude when compared to (5.2). It follows
first:

ζ(2n) =
(ζ(2))n

2(2n− 1)

n+1∑
l=1

(−)l+1

(
n+ 5− l

4

)
P (l)(n+ 1) − 2n(2n+ 1)

4π2
ζ(2n+ 2) . (6.2)

With this we can write:

ζ(3) =
π4

15552
+
π2

8
− π2

12
ln
(π

3

)
+
π2

6

∞∑
n=1

(−)n+1cn

(
π

6
√

6

)
, (6.3)

with

c1 =
1

24

[ ∞∑
n=1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)P (1)(n+ 1)

(2n− 1)2n(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)

− 24n(n+ 1)P (1)(n)

(2n− 1)2n(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)

]( π

6
√

6

)2n

, (6.4)
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c2 =
1

24

[ ∞∑
n=1

n(n+ 1)(n+ 2)(n+ 3)P (2)(n+ 1)

(2n− 1)2n(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)

−
24n(n+ 1)P (2)(n+ 1)

(
π

6
√
6

)2
(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)(2n+ 5)(2n+ 6)

]( π

6
√

6

)2n

, (6.5)

c3 =
1

24

[ ∞∑
n=1

n(n+ 1)(n+ 2)(n+ 3)P (3)(n+ 2)

(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)(2n+ 5)(2n+ 6)

−
24n(n+ 1)P (3)(n+ 2)

(
π

6
√
6

)2
(2n+ 3)(2n+ 4)(2n+ 5)(2n+ 6)(2n+ 7)(2n+ 8)

]( π

6
√

6

)2n

, (6.6)

c4 =
1

24

[ ∞∑
n=1

n(n+ 1)(n+ 2)(n+ 3)P (4)(n+ 3)

(2n+ 3)(2n+ 4)(2n+ 5)(2n+ 6)(2n+ 7)(2n+ 8)

−
24n(n+ 1)P (4)(n+ 3)

(
π

6
√
6

)2
(2n+ 5)(2n+ 6)(2n+ 7)(2n+ 8)(2n+ 9)(2n+ 10)

]( π

6
√

6

)2n

, (6.7)

and this way for higher coefficients cn. Using these first four coefficients only we find an ap-
proximate value for ζ(3) with an error δ < 0.4*10−14. The convergence is about 4 orders of
magnitude with the summation index n. This procedure permits a systematic improvement of the
convergence behavior if higher values k = 6 or k = 8 are used in (3.2). As an example we present
the corresponding formula for k = 6 :(

2n

6

)(
B2n

2n
− 5

B2n−2

2n− 2
+ 4

B2n−4

2n− 4

)
= (−)n+1 (2n)!

22n6n

n∑
l=1

(−)l+1

(
n+ 6− l

6

)
P (l)(n) .(6.8)

Our results establish a new and very fast option to compute zeta and related numbers. As an
outlook, it could be of great interest to combine our formalism with the BBP approach by use of
corresponding polylogarithmic identities to further improve the convergence properties in explicit
computations.

7 Summary

In summary, we have presented a unique computational scheme for the explicit calculation of the
Riemann ζ function and its first derivatives at all positive and negative integer values. This way
we have shown that all these numbers are directly attributed to Bernoulli numbers, but with an
increasing level of complexity when going, for example, from ζ(2) to a related sub-sum like U4.
The computational scheme is based on a new polynomial representation of the Bernoulli numbers
in connection with Bendersky’s L-numbers, which appear in context with the logarithmic Gamma
function. As a first application we performed approximate calculations of ζ(3), ζ(5) and ζ(7)

in terms our polynomial representation, where this computational procedure is applicable to all
ζ-values with integer arguments, as well as to related numbers like Catalan’s constant. Finally,
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we have shown that a computation of B2n as a function of B2n−2 or, for example, of B2n−2 and
B2n−4 only is possible by use of the polynomial representation. The result is a further improved
approximate computation of these numbers.

8 Appendix A

Here we present the explicit coefficient analysis for Si(n), i = 1, ..., 5 which allows the deter-
mination of Si(n), i ∈ N. As a non-trivial example we found by an explicit computation for
S4(n):

S4(n) =

(
4

0

)
52n+4 −

[
21

41

(
4

3

)(
3

0

)
(2n+ 4)− 20

40

((
4

0

)
+

(
4

0

))]
42n+4

+

[
22

32

(
4

2

)(
2

0

)
(2n+ 3)(2n+ 4)− 21

31

(
4

3

)((
3

0

)
+

(
3

0

))
(2n+ 4)

− 20

30

(
4

4

)((
4

1

)
−
(

4

0

))]
32n+4 −

[
23

23

(
4

2

)(
1

0

)
(2n+ 2)(2n+ 3)(2n+ 4)

− 22

22

(
4

2

)((
2

0

)
+

(
2

0

))
(2n+ 3)(2n+ 4)

− 21

21

(
4

3

)((
3

1

)
−
(

3

0

))
(2n+ 4) +

20

20

(
4

4

)((
4

1

)
+

(
4

1

))]
22n+4

+

[
24

14

(
0

0

)(
4

0

)
(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)

− 23

13

(
4

1

)((
1

0

)
+

(
1

0

))
(2n+ 2)(2n+ 3)(2n+ 4)

− 22

12

(
4

2

)((
2

1

)
+

(
2

1

))
(2n+ 3)(2n+ 4) +

21

11

(
4

3

)((
3

1

)
+

(
3

1

))
(2n+ 4)

+
20

10

(
4

4

)((
4

2

)
+

(
4

1

))
12n+4

]}

(8.1)

This expression can be written in a more compact form:

S4(n)=
1

25

4∑
k=0

(−)k(5− k)2n+4

k∑
l=0

(k − l)!
(

2

5− k

)k−l(
2n+ 4

k − l

)(
4

4− k + l

)
h4(l, k), (8.2)

where the hi(l, k) have been defined in (2.16). Analogously we found for S2(n), S3(n) and S5(n)

( S1(n) is trivial)

S2(n)=
1

23

2∑
k=0

(−)k(3− k)2n+2

k∑
l=0

(k − l)!
(

2

3− k

)k−l(
2n+ 2

k − l

)(
2

2− k + l

)
h2(l, k), (8.3)

S3(n)=
1

24

3∑
k=0

(−)k(4− k)2n+3

k∑
l=0

(k − l)!
(

2

4− k

)k−l(
2n+ 3

k − l

)(
3

3− k + l

)
h3(l, k), (8.4)
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S5(n)=
1

26

5∑
k=0

(−)k(6− k)2n+5

k∑
l=0

(k − l)!
(

2

6− k

)k−l(
2n+ 5

k − l

)(
5

5− k + l

)
h5(l, k). (8.5)

From the explicit calculation of Si(n), i = 1, ..., 5 equation (2.16) follows immediately.

9 Appendix B

In analogy to example (3.5) for k = 0 it results for k = 1 and k = 2:
n∑
l=1

(−)l+1 l P (n+1−l)(n) =
(22n − 2)6n

2n(2n!)
B2n, (9.1)

or
n∑
l=1

(−)l+1 l P (l)(n) = (−)n+1 (4n− (n− 1)22n)6n

2n(2n!)
B2n , (9.2)

with
n∑
l=1

(−)l+1 l P (n+1−l)(n) = (9.3)

(−)n+1 2n(22n − 2)

4n− (n− 1)22n

n∑
l=1

(−)l+1 l P (l)(n) .

For k = 2 we find
n∑
l=1

(−)l+1 l2 P (n+1−l)(n) =
(2 + (2n− 2)22n)6n

(2n!)
B2n, (9.4)

or
n∑
l=1

(−)l+1 l2 P (l)(n) = (9.5)

(−)n+1 (4n(2n+ 3) + (n2 − 6n+ 1)22n)6n

(2n!)2n
B2n,

with
n∑
l=1

(−)l+1l2 P (n−l+1)(n) = (9.6)

(−)n+1 2n(2 + (2n− 2)22n)

4n(2n+ 3) + (n2 − 6n+ 1)22n

n∑
l=1

(−)l+1l2 P (l)(n) ,

where the simple symmetry property
n∑
l=1

(−)l+1lm P (l)(n) =

(−)n+1

n∑
l=1

(−)l+1(n+ 1− l)m P (n+1−l)(n) , (9.7)

which we have used before in the case of m = 1 has been applied here again for m = 0, 1 and 2.
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10 Appendix C

Here we show the P -polynomials up to n = 6. It follows:

P (1)(n) =
1

n
(10.1)

P (2)(n) =
3

2 ∗ 5
(10.2)

P (3)(n) =
3(21n− 43)

23 ∗ 52 ∗ 7
(10.3)

P (4)(n) =
63n2 − 387n+ 590

24 ∗ 53 ∗ 7
(10.4)

P (5)(n) =
3(4851n3 − 59598n2 + 242737n+ 327210)

275 ∗4 ∗72 ∗ 11
(10.5)

P (6)(n) =
3(189189n4 − 3873870n3 + 29616015n2 − 100104550n+ 126087736)

28 ∗ 56 ∗ 72 ∗ 11 ∗ 13
(10.6)
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