Jacob Katriel

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 23, 2017, Number 2, Pages 45—47

**Download full paper: PDF, 145 Kb**

## Details

### Authors and affiliations

Jacob Katriel

*Department of Chemistry, Technion – Israel Institute of Technology
Haifa 32000, Israel
*

### Abstract

A recently reported nice and surprising property of the Lah numbers is shown to hold for *q*-Lah numbers as well, i.e., they can be obtained by taking successive *q*-derivatives of exp_{q}(1/*n*), where exp_{q}(*x*) is the *q*-exponential.

### Keywords

- q-Lah numbers
- q-exponential

### AMS Classification

- 11B65
- 11B73

### References

- Daboul, S., Mangaldan, J., Spivey, M. Z. & Taylor, P. J. (2013) The Lah numbers and the
*n*‘th derivative of*e*^{ 1/x } - Garsia, A. M. & Remmel, J. (1980) A combinatorial interpretation of
*q*-derangement and*q*-Laguerre numbers, Europ. J. Combinatorics, 1, 47–59. - Lindsay, J., Mansour, T. & Shattuck, M. (2011) A new combinatorial interpretation of a
*q*-analogue of the Lah numbers, J. Combinatorics, 2, 245–264. - Wagner, C. G. (1996) Generalized Stirling and Lah numbers, Discrete Math., 160, 199–218.

## Related papers

## Cite this paper

APAKatriel, J. (2017). The *q*-Lah numbers and the *n*th *q*-derivative of exp_{q}(1/*n*). Notes on Number Theory and Discrete Mathematics, 23(2), 45-47.

Katriel, Jacob. “The *q*-Lah Numbers and the *n*th *q*-derivative of exp_{q}(1/*n*).” Notes on Number Theory and Discrete Mathematics 23, no. 2 (2017): 45-47.

Katriel, Jacob. “The *q*-Lah Numbers and the *n*th *q*-derivative of exp_{q}(1/*n*).” Notes on Number Theory and Discrete Mathematics 23.2 (2017): 45-47. Print.