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Abstract: A recently reported nice and surprising property of the Lah numbers is shown to
hold for the q-Lah numbers as well, i.e., they can be obtained by taking successive q-derivatives
of expq

(
1
x

)
, where expq(x) is the q-exponential.
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1 Introduction

The Lah numbers are the transformation coefficients allowing the expression of a rising factorial
as a linear combination of falling factorials, i.e.,

x(x+ 1)(x+ 2) · · · (x+ k − 1) =
k∑

`=1

L(k, `)x(x− 1)(x− 2) · · · (x− `+ 1) .

The Lah numbers are given by the simple explicit expression

L(k, `) =

(
k

`

)
(k − 1)!

(`− 1)!
.

They are closely related to the Stirling numbers, satisfying

L(k, `) =
k∑

j=`

[
k

j

]{
j

`

}
,
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and they satisfy the recurrence relation

L(k + 1, `) = (k + `)L(k, `) + L(k, `− 1) ,

with L(1, 1) = 1.
It was recently shown by Daboul et al. [1] that the k-th derivative of exp

(
1
x

)
yields the Lah

numbers, i.e.,
dk

dxk

(
exp

(
1

x

))
= (−1)k exp

(
1

x

) k∑
`=1

L(k, `)

xk+`
. (1)

The q-Lah numbers

[n]q[n+ 1]q · · · [n+ k − 1]q =
k∑

`=1

Lq(k, `)[n]q[n− 1]q · · · [n− `+ 1]q , (2)

were introduced by Garsia and Remmel [2], who derived the recurrence relation

Lq(k + 1, `) = [k + `]qLq(k, `) + qk+`−1Lq(k, `− 1) (3)

and the explicit expression

Lq(k, `) =

(
k

`

)
q

[k − 1]q!

[`− 1]q!
q`(`−1) .

In the next section we derive the q-analogue of equation (1).

2 q-analogue of equation (1)

Recall the definitions of the q-exponential

expq(x) =
∞∑
i=0

xi

[i]q!
,

of the q-derivative

Df(x) =
f(qx)− f(x)

x(q − 1)
,

and the q-Leibniz rule for the q-derivative of a product

D
(
f(x)g(x)

)
= (Df(x))g(qx) + f(x)(Dg(x)) .

The following relations are easily established

D

(
1

(xqk−1)`

)
= −qk

[`]q
(xqk)`+1

,

and

D expq

(
1

xqk−1

)
= − qk

(xqk)2
expq

(
1

xqk

)
. (4)
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Hence,

D

(
1

(xqk−1)`
expq

(
1

xqk−1

))
= −qk

(
[`]q

(xqk)`+1
+

q`

(xqk)`+2

)
expq

(
1

xqk

)
. (5)

The expression for the q-derivative of expq

(
1
x

)
yields a finite sum involving the q-Lah numbers

Lq(k, `), defined by equation (2), as stated in

Theorem 1.

Dk

(
expq

(
1

x

))
= (−1)kq(

k+1
2 ) expq

(
1

xk

) k∑
`=1

Lq(k, `)

xk+`
k

(6)

where xk = xqk.

Proof. By induction. For k = 1 we obtain D
(
expq

(
1
x

))
= −q expq

(
1
qx

)
Lq(1,1)

(xq)2
, which is

consistent with equation (4), since Lq(1, 1) = 1.
Now, assume that the theorem holds for k and take the q-derivatives of both sides of equation

(6). The left-hand-side becomes

Dk+1

(
expq

(
1

x

))
= (−1)k+1q(

k+2
2 ) expq

(
1

xk+1

) k+1∑
`=1

Lq(k + 1, `)

xk+`+1
k+1

and, using equation (5) followed by an appropriate shift of the summation index, the right-hand
side becomes

(−1)k+1q(
k+2
2 ) expq

(
1

xk+1

) k+1∑
`=1

1

xk+`+1
k+1

(
[k + `]qLq(k, `) + qk+`−1Lq(k, `− 1)

)
.

One readily obtains the recurrence relation, equation (3).

Different q-analogues of the Lah numbers have been considered by Lindsay, Mansour and
Shattuck [3] and by Wagner [4]. Whether they can be produced by appropriately modified
q-differentiations and q-exponentials remains to be seen.
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