Inequalities for φ and ψ functions (III)

Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 23, 2017, Number 1, Pages 19–23
Full paper (PDF, 148 Kb)

Details

Authors and affiliations

Krassimir T. Atanassov
Department of Bioinformatics and Mathematical Modelling
IBPhBME, Bulgarian Academy of Sciences
Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria
and
Intelligent Systems Laboratory
Prof. Asen Zlatarov University, Bourgas-8000, Bulgaria

Abstract

A new arithmetic function is defined and some of its properties are studied.

Keywords

  • Arithmetic function
  • Natural number
  • Prime number

AMS Classification

  • 11A25

References

  1. Atanassov, K. (1991) Inequalities for φ and σ functions. I. Bulletin of Number Theory and Related Topics, XV(1–3), 12–14.
  2. Atanassov, K. (1991) Inequalities for φ and σ functions. II. Bulletin of Number Theory and Related Topics, XV(1–3), 15–18.
  3. Atanassov, K. (1991) Inequalities for φ and σ functions. III. Bulletin of Number Theory and Related Topics, XV(1–3), 19–20.
  4. Atanassov, K. (1996) Inequalities for φ and ψ functions (II), Octogon, 4(2), 18–20.
  5. Atanassov, K. (2008) Inequalities related to φ, ψ and σ functions (III), Number Theory and Discrete Mathematics, 14(1), 16–24.
  6. Mitrinovic, D. & Sándor, J. (1996) Handbook of Number Theory, Kluwer Academic Publishers.
  7. Nagell, T. (1950) Introduction to Number Theory, John Wiley & Sons, New York.

Related papers

Cite this paper

Atanassov, K. T. (2017). Inequalities for φ and ψ functions (III). Notes on Number Theory and Discrete Mathematics, 23(1), 19-23.

Comments are closed.