New theorems on explicit evaluation of a parameter of Ramanujan’s χ(q) function

Nipen Saikia and Jubaraj Chetry
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 23, 2017, Number 1, Pages 7–18
Full paper (PDF, 184 Kb)

Details

Authors and affiliations

Nipen Saikia 
Department of Mathematics, Rajiv Gandhi University
Rono Hills, Doimukh-791112, Arunachal Pradesh, India

Jubaraj Chetry 
Department of Mathematics, Rajiv Gandhi University
Rono Hills, Doimukh-791112, Arunachal Pradesh, India

Abstract

We prove many new theorems for the explicit values of the parameter Ik,n, for positive real number n and k, involving Ramanujan’s χ(q) function by establishing its connection with some other parameters of Ramanujan’s theta-functions. As applications of the parameter Ik,n we offer formulas for the explicit values of Ramanujan’s cubic continued fraction and χ(eπn).

Keywords

  • Ramanujan’s theta-function
  • Parameters
  • Explicit values
  • Ramanujan’s cubic continued fraction

AMS Classification

  • 33D90
  • 11F20

References

  1. Adiga, C., Kim, T., Mahadeva Naika, M.S. & Madhusudhan, H.S. (2004) On Ramanujan’s cubic continued fraction and explicit evaluations of theta-functions. Indian J. Pure and Appl. Math. 35(9), 1047–1062.
  2. Baruah, N. D. & Bhattacharyya, P. (2004) Some theorems on the explicit evaluation of Ramanujan’s theta-functions. Int. J. Math. Math. Sci., 40, 2149–2159.
  3. Baruah, N. D., Bora, J. & Saikia, N. (2008) Some new proofs of modular relations for the Gollnitz-Gordon functions. The Ramanujan J., 15, 281–301.
  4. Baruah, N. D. & Saikia, N. (2007) Two parameters for Ramanujan’s theta-functions and their explicit values. Rocky Mountain J. Math. 37(6), 1747–1790.
  5. Berndt, B. C. (1991) Ramanujan’s Notebooks, Part III, Springer-Verlag, New York
  6. Berndt, B. C. (1994) Ramanujan’s Notebooks, Part IV, Springer-Verlag, New York
  7. Berndt, B. C. (1998) Ramanujan’s Notebooks, Part V, Springer-Verlag, New York
  8. Berndt, B. C. & Chan, H. H. (1995) Ramanujan’s explicit values for the classical thetafunction. Mathematika, 42, 278–294.
  9. Berndt, B. C., Chan, H. H., Kang, S.-Y. & Zhang, L.-C. (2002) A certain quotient of etafunctions found in Ramanujan’s lost notebook. Pacific J. Math., 202(2), 267–304.
  10. Berndt, B. C., Chan, H. H. & Zhang, L.-C. (1997) Ramanujan’s remarkable product of theta-functions. Proc. Edinburg Math. Soc., 40, 583–612.
  11. Ramanujan, S. (1957) Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay.
  12. Saikia, N. (2012) A new parameter for Ramanujan’s theta-functions and explicit values, Arab J. Math. Sc., 18, 105–119.
  13. Saikia, N. (2012) A Parameter for Ramanujans Function χ(q): Its Explicit Values and Applications. ISRN Comput. Math. Vol. 2012, Article ID 169050.
  14. Saikia, N. (2016) Some properties, explicit evaluations, and applications of Ramanujan’s remarkable product of theta functions. Acta Math. Vietnam., 41, 133–142.
  15. Whittaker, E. T. & Watson, G. N. (1991) A Course of Modern Analysis, Cambridge University Press, Cambridge, 1966. Indian edition is published by Universal Book Stall, New Delhi.
  16. Yi, J. (2004) Theta-function identities and the explicit formulas for theta-function and their applications. J. Math. Anal. Appl., 292, 381–400.
  17. Yi, J. (2004) Construction and Application of Modular Equations, Ph. D. Thesis, University of Illinois at Urbana Champaign.

Related papers

Cite this paper

Saikia, N., & Chetry, J. (2017). New theorems on explicit evaluation of a parameter of Ramanujan’s χ(q) function. Notes on Number Theory and Discrete Mathematics, 23(1), 7-18.

Comments are closed.