Magdalena Corciovei-Bănescu
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 17, 2011, Number 3, Pages 1–9
Full paper (PDF, 178 Kb)
Details
Authors and affiliations
Magdalena Corciovei-Bănescu
Faculty of Mathematics and Informatics, Constanța
Bd. Mamaia 124, 8700 Constanța, Romania
National College “George Cosbuc”, Bucharest, Romania
Str. Olari 29-31 Sect.2 Bucharest
Abstract
We prove an improvement Rosser–Schoenfeld inequalities, more precisely:
where Ak(x) = Σp ≤ x pk and k ≥ 0.
Keywords
- Arithmetic functions
- Inequalities
AMS Classification
- 11N05
- 11N64
- 11Y60
References
- Apostol, T. Introduction to Analytic Number Theory. Springer-Verlag, 1976.
- Bourbaki, N. Fonctions d’une variable reelle, (Theorie elementaire). Paris, Hermann, 1961, 228–232.
- Dusart, P. Sharper bounds for φ, θ, π, pn. Rapport de recherche 1998 – 2006, Universite de Limoges.
- Massias, J.-P., G. Robin. Bornes effectives pour certaines fonctions concernant les nombres premiers. Journal de Theorie des Nombres de Bordeaux, Tome 8, 1996, No. 1, 215-242.
- Rosser, J., L. Schoenfeld. Approximate formulas for some functions of prime numbers. Illinois, Volume 6, 1962, Issue 1, 64–94.
- Rosser, J., L. Schoenfeld. Sharper bounds for the Chebyshev function θ and φ. Mathematics of computation, Vol. 29, January 1975, No. 129, 243–269.
- Schoenfeld, L. Sharper bounds for the Chebyshev function θ and φ. Mathematics of computation, Vol. 30, January 1976, 337–360.
Related papers
Cite this paper
Corciovei-Bănescu, M. (2011). The relation between π(x) and certain arithmetic functions. Notes on Number Theory and Discrete Mathematics, 17(3), 1-9.