Combined 2-Fibonacci sequences

Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 16, 2010, Number 2, Pages 24–28
Full paper (PDF, 123 Kb)

Details

Authors and affiliations

Krassimir T. Atanassov
CLBME – Bulgarian Academy of Sciences, P.O.Box 12, Sofia-1113, Bulgaria

References

  1. Ando S., M. Hayashi, Counting the number of equivalence classes of (m, F) sequences and their generalizations, The Fibonacci Quarterly, Vol. 35 (1997), No. 1, 3-8.
  2. Atanassov K., On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly, Vol. 24 (1986), No. 4, 362-365.
  3. Atanassov K., On a generalization of the Fibonacci sequence in the case of three se- quences. The Fibonacci Quarterly, Vol. 27 (1989), No. 1, 7-10.
  4. Atanassov K., Remark on variants of Fibonacci squares. Bulletin of Number Theory and Related Topics, Vol. XIII (1989), 25-27.
  5. Atanassov K., A remark on a Fibonacci plane. Bulletin of Number Theory and Related Topics, Vol. XIII (1989), 69-71.
  6. Atanassov K., Remark on a new direction for a generalization of the Fibonacci sequence, The Fibonacci Quarterly, Vol. 33 (1995), No. 3, 249-250.
  7. Atanassov K., L. Atanassova, D. Sasselov, A new perspective to the generalization of the Fibonacci sequence, The Fibonacci Quarterly, Vol. 23 (1985), No. 1, 21-28.
  8. Atanassov K., V. Atanassova, A. Shannon, J. Turner, New Visual Perspectives on Fi- bonacci Numbers. World Scientific, New Jersey, 2002.
  9. Atanassov K., J. Hlebarova, S. Mihov, Recurrent formulas of the generalized Fibonacci and Tribonacci sequences, The Fibonacci Quarterly, Vol. 30 (1992), No. 1, 77-79.
  10. Atanassov K., A. Shannon, J. Turner, The generation of trees from coupled third order recurrence relations, Research in Mathematics, Vol. 5, Blagoevgrad, 1995, 46-56.
  11. Atanassova V., A. Shannon, K. Atanassov, Sets of extensions of the Fibonacci sequences. Comptes Rendus de l’Academie bulgare des Sciences, Tome 56, 2003, No. 9, 9-12.
  12. Dantchev S., A closed form of the (2; T)-generalizations of the Fibonacci sequence, The Fibonacci Quarterly, Vol. 36 (1998), No. 5, 448-451.
  13. Hirschhorn M., Non-trivial intertwined second-order recurrence relation. The Fibonacci Quarterly, Vol. 43 (2005), No. 4, 316-325.
  14. Hirschhorn, Coupled second-order recurrences. Fibonacci sequence, The Fibonacci Quarterly, Vol. 44 (2006), No. 1, 20-25.
  15. Hirschhorn, Coupled third-order recurrences. Fibonacci sequence, The Fibonacci Quarterly, Vol. 44 (2006), No. 1, 26-31.
  16. Lee J.-Z., J.-S. Lee, Some properties of the generalization of the Fibonacci sequence. The Fibonacci Quarterly, Vol. 25 (1987) No. 2, 111-117.
  17. Randic M., D. Morales, O. Araujo, Higher-order Fibonacci numbers, Journal of Mathematical Chemistry, 1996, Vol.20, No.1-2, 79-94.
  18. Shannon A., R. Melham, Carlitz generalizations of Lucas and Lehmer sequences, The Fibonacci Quarterly, Vol. 31 (1993), No. 2, 105-111.
  19. Spickerman W., R. Creech, The (2; T) generalized Fibonacci sequences, The Fibonacci Quarterly, Vol. 35 (1997), No. 4, 358-360.
  20. Spickerman W., R. Creech, R. Joyner, On the structure of the set of difference systems defining (3, F) generalized Fibonacci sequence, The Fibonacci Quarterly, Vol. 31 (1993), No. 4, 333-337.
  21. Spickerman W., R. Creech, R. Joyner, On the (3; F) generalizations of the Fibonacci sequence, The Fibonacci Quarterly, Vol. 33 (1995), No. 1, 9-12.
  22. Spickerman W., R. Joyner, R. Creech, On the (2; F)-generalizations of the Fibonacci sequence, The Fibonacci Quarterly, Vol. 30 (1992), No. 4, 310-314.

Related papers

Cite this paper

Atanassov, K. T. (2010). Combined 2-Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, 16(2), 24-28.

Comments are closed.