József Sándor
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 15, 2009, Number 3, Pages 9–13
Full paper (PDF, 157 Kb)
Details
Authors and affiliations
József Sándor
Babeș-Bolyai University of Cluj, Romania
Abstract
We prove that the sequence of ratios of the k-th powers of divisors, resp. unitary divisors of a number, is decreasing upon k.
Keywords
- Arithmetic functions
- Inequalities
AMS Classification
- 11A25
References
- K. T. Atanassov, Remark on József Sándor and Florian Luca’s theorem, C. R. Acad. Bulg. Sci. 55(2002), no. 10, 9-14.
- P. Erdős, Amer. Math. Monthly 58(1951), p. 98.
- M. Le, A conjecture concerning the Smarandache dual function, Smarandache Notion J. 14(2004), 153-155.
- F. Luca, On a divisibility property involving factorials, C. R. Acad. Bulg. Sci. 53(2000), no. 6, 35-38.
- P. Moree and H. Roskam, On an arithmetical function related to Euler’s totient and the discriminantor, Fib. Quart. 33(1995), 332- 340.
- J. Sándor, On certain generalizations of the Smarandache function, Smarandache Notions J. 11(2000), no. 1-3, 202-212.
- J. Sándor, On certain generalizations of the Smarandache function, Notes Number Theory Discr. Math. 5(1999), no. 2, 41-51.
- A. Schinzel, Sur l’équation φ(x) = m, Elem. Math. 11(1956), 75-78.
- F. Smarandache, A function in the number theory, An. Univ. Timișoara, Ser. Mat., 38(1980), 79-88.
- J. Sándor, On values of arithmetical functions at factorials, I, Smarandache Notions J., 10(1999), 87-94.
Related papers
Cite this paper
Sándor, J. (2009). On the monotonicity of the sequence (σk / σ*k). Notes on Number Theory and Discrete Mathematics, 15(3), 9-13.