Arithmetical function characterizations and identities induced through equivalence relations

Temba Shonhiwa
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 13, 2007, Number 3, Page 1–19
Full paper (PDF, 6018Kb

Details

Authors and affiliations

Temba Shonhiwa
School of Mathematics, University of the Witwatersrand
P. Bag 3, Wits 2050, South Africa

Abstract

Let A denote the set of arithmetic functions and ∗ Dirichlet convolution. The paper presents and alternative approach to the study of arithmetic functions by introducing a homomorphism between the subgroup <U, ∗> of the group of units in <A, ∗> and the quotient ring induces through an equivalence relation. The same notion is extended to the case of unitary convolution.

Keywords

  • Dirichlet and unitary convolution
  • Functional equation
  • Multiplicative and com­pletely multiplicative functions
  • Equivalence relation
  • Homomorphism

AMS Classification

  • 11A25

References

  1. M. Apostol, Some Properties of Completely Multiplicative Functions, Amer. Math. Monthly, 78 (1971) 266-271.
  2. M. Chawla, On a Pair of Arithmetic Functions, J. Natur. Sci. and Math., 8 (1969), pp. 263-269. MR 39, 150. Zbl. 175, 326.
  3. Carlitz, Completely Multiplicative Function, Amer. Math. Monthly, 78, (1971), 1140.
  4. Carlitz and M. V. Subbarao, Transformation of arithmetic functions, Duke Math. J. 40, (1973), 949-958.
  5. D. Cashwell and C. J. Everett, The ring of arithmetic functions, Pacific J. Math., 9 (1959), 975-985.
  6. Cohen, Arithmetical functions associated with the unitary divisors of an integer , Math. Zeitschr. 74, 66-80 (1960).
  7. Cohen, Unitary products of arithmetical functions, Acta Arithmetica, vii, 29-38 (1961).
  8. E. Dickson, History of the Theory of Numbers, vol. I. New York, reprinted 1952.
  9. G. L. Dirichlet, Vorlesungen uber Zahlentheorie, 4th ed. Brunswick 1894 (edited by R. Dedekind).
  10. Fekete, Uber die additive Darstellung einiger zahlentheoretischer Funktionen, Math, u. naturwiss. Berichte aus Ungarn 26, 196 – 211 (1913).
  11. Glockner, L. G. Lucht, S. Porubsky, Solutions to Arithmetic Convolution Equations, Proc. AMS, Volume 135, Number 6, June 2007, pp. 619-1629.
  12. Haukkanen, A characterization of completely multiplicative arithmetical functions, Nieuw Arch. Wisk., Vierde serie Deel 14 No. 3 November 1996, pp. 325-328.
  13. O. LeVan, On a generlization of Chawla’s two arithmetic functions, J. Natur. Sci. and Math., Vol. 9 (1969), pp. 57-66. MR 40, 4230. Zbl. 182, 68.
  14. Shonhiwa, Core function based characterizations of Number Theoretic functions, Quaestiones Mathematicae Journal, 27(2004), 185 -194.
  15. Sivaramakrishnan, Multiplicative Function and its Dirichlet Inverse, Amer. Math. Monthly 77, 772-773.
  16. Sivaramakrishnan, Classical Theory of Arithmetic Functions, in Monographs and Textbooks in Pure and Applied Mathematics, Vol. 126, Marcel Dekker, Inc., New York, 1989.
  17. Vaidyanathaswamy, The theory of multiplicative arithmetical functions. Trans. Amer. Math. Soc 33, 579-662 (1931).

Related papers

Cite this paper

Shonhiwa, T. (2007). Arithmetical function characterizations and identities induced through equivalence relations. Notes on Number Theory and Discrete Mathematics, 13(3), 1-19.

Comments are closed.