R. L. Ollerton and A. G. Shannon

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 12, 2006, Number 2, Pages 8—12

**Download full paper: PDF, 39 Kb**

## Details

### Authors and affiliations

R. L. Ollerton

*University of Western Sydney, Penrith Campus DC1797, Australia*

A. G. Shannon

*KvB Institute of Technology, North Sydney 2060, and
Warrane College, The University of NSW, Kensington 1465, Australia
*

### AMS Classification

- 11A07
- 11A41
- 11B65

### References

- R.C. Bollinger & C. L. Burchard. “Lucas’s theorem and some related results for extended Pascal triangles.”
*American Mathematical Monthly*97.3 (1990):198-204. - L. Carlitz. “Some congruences involving sums of binomial coefficients.”
*Duke Math. J.*27.1 (1960):77-80. - L. Carlitz. “Some congruences involving binomial coefficients.”
*Duke Math. J.*33.4 (1966):721-724. - R.L. Ollerton & A.G. Shannon. “Extensions of generalized binomial coefficients.”
*Applications of Fibonacci Numbers*9:187-199, 2004. - R.L. Ollerton & A.G. Shannon. “Further properties of generalized binomial coefficient
*k-*extensions.”*Fibonacci Quarterly*, 43(2):124-129, 2005. - D.G. Poole. “The Towers and Triangles of Professor Claus (or, Pascal Knows Hanoi).”
*Math. Mag.*67 (1994):323-344.

## Related papers

## Cite this paper

APAOllerton, R. L., & Shannon, A. G. (2006). Lucas’ theorem for extended generalized binomial coefficients. Notes on Number Theory and Discrete Mathematics, 12(2), 8-12.

ChicagoOllerton, R.L., and A. G. Shannon. “Lucas’ Theorem for Extended Generalized Binomial Coefficients.” Notes on Number Theory and Discrete Mathematics 12, no. 2 (2006): 8-12.

MLAOllerton, R.L., and A. G. Shannon. “Lucas’ Theorem for Extended Generalized Binomial Coefficients.” Notes on Number Theory and Discrete Mathematics 12.2 (2006): 8-12. Print.