Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 11, 2005, Number 4, Pages 12–16
Full paper (PDF, 1604 Kb)
Details
Authors and affiliations
Krassimir T. Atanassov
CLBME – Bulgarian Academy of Sciences
P.O.Box 12, Sofia-1113, Bulgaria
References
- Atanassov, K., L. Atanassova, D. Sasselov. A new perspective to the generalization of the Fibonacci sequence, The Fibonacci Quarterly. Vol 23 (1985), No. 1, 21-28.
- Atanassov, K., On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly. Vol 24 (1986), No. 4, 362-365.
- Lee, J.-Z., J.-S. Lee, Some properties of the generalization of the Fibonacci sequence, The Fibonacci Quarterly. Vol 25 (1987), No. 2, 111-117.
- Spickerman, W., R. Joyner, R. Creech. On the (2,F)-generalizations of the Fibonacci sequence, The Fibonacci Quarterly. Vol 30 (1992), No. 4, 310-314.
- Spickerman, W., R. Creech, R. Joyner. On the structure of the set of difference systems defining (3,F) generalized Fibonacci sequence, The Fibonacci Quarterly. Vol 31 (1993), No. 4, 333-337.
- Spickerman, W., R. Creech, R. Joyner. On the (3,F)-generalizations of the Fibonacci sequence, The Fibonacci Quarterly. Vol 33 (1995), No. 1, 9-12.
- Spickerman, W., R. Creech. The (2,T) generalized Fibonacci sequence, The Fibonacci Quarterly. Vol 35 (1997), No. 4, 358-360.
- Shannon, A., R. Melham. Carlitz generalizations of Lucas and Lehmer sequences, The Fibonacci Quarterly, Vol 31 (1993), No. 2, 105-111.
- Atanassov, K., V. Atanassova, A. Shannon, J. Turner, New Visual Perspectives on Fibonacci Numbers, World Scientific, New Jersey, 2002.
Related papers
Cite this paper
Atanassov, K. T. (2005). On two new 2-Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, 11(4), 12-16.